Plant Ecology

, Volume 214, Issue 11, pp 1321–1334 | Cite as

Tree-growth responses across environmental gradients in subtropical Argentinean forests

  • María Eugenia FerreroEmail author
  • Ricardo Villalba
  • Mónica De Membiela
  • Alberto Ripalta
  • Silvia Delgado
  • Leonardo Paolini


Subtropical forests in montane ecosystems grow under a wide range of environmental conditions. However, little is known about the growth responses of subtropical trees to climate along ecological gradients. To assess how, and to what extent climate controls tree growth, we analyzed tree responses to climate for 15 chronologies from 4 different species (Schinopsis lorentzii, Juglans australis, Cedrela lilloi, Alnus acuminata) across a variety of environments in subtropical forests from northwestern Argentina (22–28°S, 64–66°W). Using correlation and principal component analysis, site and species differences in tree-growth responses to precipitation and temperature were determined along the elevation gradient from the dry-warm Chaco lowlands to the wet-cool montane Yungas. Our results show that species responses differ according to the severity in climate conditions along the elevation gradient. At sites with unfavorable conditions, mainly located at the extremes of the environmental gradient, responses of different species to climate variations are similar; in contrast, at sites with relatively mild conditions, tree growth displays a large variety of responses reflecting differences in both local environmental conditions and species physiology. Our research suggests that individualistic responses to environmental variability would determine differences in the type and timing of the responses of dominant trees to climate, which ultimately may shift species’ assemblages in montane subtropical regions of South America under future climate changes.


Dendroecology Climate responses Environmental gradients Yungas and Chaco forests 



Authors wish to thank to “Rana” Ledesma, Mariano Morales, Gualberto Zalazar, Facundo Rojas and Parque Botánico Municipal Jujuy for field and technical assistance, and Nélida Horak for English revision. Silvia Pacheco (Fundación ProYungas) provided ecoregions’ shape files. This study was supported by the Argentinean Agency for Promotion of Science and Technology (PICTR02-123), the Argentinean Council of Research and Technology (CONICET), and the Inter-American Institute for Global Change Research (IAI) CRN 2047. We thank Chris Lusk and two anonymous reviewers for comments that greatly improve the manuscript.


  1. Barry RG (1981) Mountain weather and climate. Methuen, LondonGoogle Scholar
  2. Bianchi AR, Yáñez C (1992) Las precipitaciones en el noroeste argentino. Instituto Nacional de Tecnología Agropecuaria, SaltaGoogle Scholar
  3. Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree-Ring Bull 44:1–15Google Scholar
  4. Briffa KR (1995) Interpreting high-resolution proxy climate data. The example of dendroclimatology. In: von Storch H, Navarra A (eds) Analysis of climate variability, applications of statistical techniques. Springer, Berlin, pp 77–94CrossRefGoogle Scholar
  5. Cabrera AL (1994) Regiones fitogeográficas Argentinas. In: Kugler W (ed) Enciclopedia Argentina de agricultura y jardinería. ACME, Buenos Aires, pp 1–85Google Scholar
  6. Cook ER (1985) A time series approach to tree-ring standardization, Dissertation, University of ArizonaGoogle Scholar
  7. Cook ER, Krusic P (2005) A tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-ring laboratory lamont doherty earth observatory. Columbia University, New YorkGoogle Scholar
  8. Cooley WW, Lohnes PR (1971) Multivariate data analysis. Wiley, New YorkGoogle Scholar
  9. Delcourt HR, Delcourt PA, Webb T III (1983) Dynamic plant ecology: the spectrum of vegetational change in space and time. Quaternary Sci Rev 1:153–175CrossRefGoogle Scholar
  10. Díaz S, Hodgson JG, Thompson K et al (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15:295–304Google Scholar
  11. Drobyshev I, Gewehr S, Berninger F, Bergeron Y (2012) Species specific growth responses of black spruce and trembling aspen may enhance resilience of boreal forest to climate change. J Ecol 101:231–242CrossRefGoogle Scholar
  12. Ferrero ME (2011) Cambios en el crecimiento leñoso de las regiones subtropicales de América del Sur en relación con la variabilidad climática. Universidad Nacional de Córdoba, DissertationGoogle Scholar
  13. Ferrero ME, Villalba R (2009) Potential of Schinopsis lorentzii for dendrochronological studies in subtropical dry Chaco forests of South America. Trees 23:1275–1284CrossRefGoogle Scholar
  14. Fritts HC (1974) Relationships of ring widths in arid-site conifers to variations in monthly temperature and precipitation. Ecol Monogr 44:411–440CrossRefGoogle Scholar
  15. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  16. Glock WS (1955) Tree growth II. Growth rings and climate. Bot Rev 21:73–188CrossRefGoogle Scholar
  17. Grau HR, Easdale TA, Paolini L (2003) Subtropical dendroecology: dating disturbances and forest dynamics in northwestern Argentina montane ecosystems. Forest Ecol Manag 177:131–143CrossRefGoogle Scholar
  18. Graumlich LJ (1993) Response of tree growth to climatic variation in the mixed conifer and deciduous forests of the upper Great Lakes region. Can J Forest Res 23:133–143CrossRefGoogle Scholar
  19. Günter S, Stimm B, Cabrera M, Diaz ML, Lojan M, Ordoñez E, Richter M, Weber M (2008) Tree phenology in montane forests of southern Ecuador can be explained by precipitation, radiation and photoperiodic control. J Trop Ecol 24:247–258CrossRefGoogle Scholar
  20. Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ (2001) Global change in forests: responses of species, communities and biomes. Bioscience 51:765–779CrossRefGoogle Scholar
  21. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 44:69–75Google Scholar
  22. Holmes RL (1994) Dendrochronology program library: users manual. University of Arizona, TucsonGoogle Scholar
  23. Huntley B (1991) How plants respond to climate change: individualism and the consequences for plant communities. Ann Bot 67:15–22Google Scholar
  24. Hunzinger H (1995) La precipitación horizontal: su importancia para el bosque y a nivel de cuencas en la Sierra de San Javier, Tucumán, Argentina. In: Brown AD, Grau HR (eds) Investigación Conservación y Desarrollo en Selvas Subtropicales de Montaña. LIEY, Tucumán, pp 53–58Google Scholar
  25. IPPC (2007) Working group II: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Killeen TJ, García E, Beck S (1993) Guía de árboles de Bolivia. Herbario Nacional de Bolivia and Missouri Botanical Garden, La PazGoogle Scholar
  27. Lara A, Villalba R, Wolodarsky-Franke A, Aravena JC, Luckman B, Cuq E (2005) Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35°40′–55°S) in the Chilean Andes. J Biogeogr 32:879–893CrossRefGoogle Scholar
  28. Morales MS, Villalba R (2011) Influence of precipitation pulses on long-term Prosopis ferox dynamics in the Argentinean intermontane subtropics. Oecologia 168:381–392PubMedCrossRefGoogle Scholar
  29. Morales MS, Villalba R, Grau HR, Paolini L (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85:3080–3089CrossRefGoogle Scholar
  30. Morello J (2002) Grandes ecosistemas de Suramérica. In: Gallopin GC (ed) El futuro ecológico de un continente. Fondo de Cultura Económica, México, pp 1–56Google Scholar
  31. Oberhuber W, Kofler W (2000) Topographic influences on radial growth of Scots pine (Pinus sylvestris L.) at small spatial scales. Plant Ecol 146:231–240CrossRefGoogle Scholar
  32. Oliver CD, Larson BC (1990) Forest stand dynamics. McGraw-Hill, New YorkGoogle Scholar
  33. Pacheco S, Yapur A (2006) Fenología de dos especies de cedro en un gradiente altitudinal del Parque Nacional Calilegua, Jujuy. In: Pacheco S, Brown A (eds) Ecología y producción de cedro (género Cedrela) en las Yungas australes. LIEY-Proyungas, Tucumán, pp 31–40Google Scholar
  34. Paolini L, Villalba R, Grau HR (2005) Precipitation variability and landslide occurrence in a subtropical mountain ecosystem of NW Argentina. Dendrochronologia 22:175–180CrossRefGoogle Scholar
  35. Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall MB (2011) Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. J Ecol 99:165–175CrossRefGoogle Scholar
  36. Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27:261–273CrossRefGoogle Scholar
  37. Peterson DW, Peterson DL (1994) Effects of climate on radial growth of subalpine conifers in the North Cascade mountains. Can J Forest Res 24:1921–1932CrossRefGoogle Scholar
  38. Reich PB (1995) Phenology of tropical forests: patterns, causes, and consequences. Can J Bot 73:164–174CrossRefGoogle Scholar
  39. Sarmiento G (1972) Ecological and floristic convergences between seasonal plant formations of tropical and subtropical South America. J Ecol 60:367–410CrossRefGoogle Scholar
  40. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  41. Tardif J, Camarero JJ, Ribas M, Gutierrez E (2003) Spatiotemporal variability in radial growth of trees in the central Pyrenees: climatic and site influences. Ecol Monogr 73:241–257CrossRefGoogle Scholar
  42. Villalba R, Holmes RL, Boninsegna JA (1992) Spatial patterns of climate and tree growth variations in subtropical northwestern Argentina. J Biogeogr 19:631–649CrossRefGoogle Scholar
  43. Villalba R, Veblen TT, Ogden J (1994) Climatic influences on the growth of subalpine trees in the Colorado front range. Ecology 75:1450–1462CrossRefGoogle Scholar
  44. Villalba R, Boninsegna JA, Veblen TT, Schmelter A, Rubulis S (1997) Recent trends in tree-ring records from high elevation sites in the Andes of Northern Patagonia. Clim Change 36:425–454CrossRefGoogle Scholar
  45. Villalba R, Grau HR, Boninsegna JA, Jacoby GC, Ripalta A (1998) Tree-ring evidence for long-term precipitation changes in subtropical South America. Int J Climatol 18:1463–1478CrossRefGoogle Scholar
  46. Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the Southern Andes: 20th century variations in the context of the past 400 years. Clim Change 59:177–232CrossRefGoogle Scholar
  47. Villalba R, Delgado S, De Membiela M, Mendoza D (2006) Variabilidad interanual de los caracteres anatómicos en el leño de Cedrela lilloi en el noroeste de Argentina. In: Pacheco S, Brown A (eds) Ecología y Producción de cedro (género Cedrela) en las Yungas australes. LIEY-ProYungas, Tucumán, pp 59–82Google Scholar
  48. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • María Eugenia Ferrero
    • 1
    Email author
  • Ricardo Villalba
    • 1
  • Mónica De Membiela
    • 1
    • 2
  • Alberto Ripalta
    • 1
  • Silvia Delgado
    • 1
  • Leonardo Paolini
    • 3
  1. 1.Dendrocronología e Historia Ambiental. Instituto Argentino de Nivología Glaciología y Ciencias Ambientales (IANIGLA)CCT-CONICET-MENDOZAMendozaArgentina
  2. 2.Universidad Politécnica de MadridMadridSpain
  3. 3.Instituto de Ecología Regional, UNTTucumánArgentina

Personalised recommendations