Plant Ecology

, Volume 213, Issue 8, pp 1209–1220 | Cite as

Elevational patterns in the vascular flora of a highly diverse region in southern Mexico

Article

Abstract

We examined general and family-specific patterns of vascular plant richness along a large elevational gradient (0–3,670 m a.s.l.), assessed the continuity of these patterns and analysed their potential underlying causes in a high diversity region of the Sierra Madre del Sur, Oaxaca, Mexico. We used a vascular plant database constructed previously. The gradient was divided into 18 200-m elevation belts. To examine elevational patterns of richness, we used both observed and estimated (interpolated) species richness, as well as genus and family observed richness, for each belt. A generalised linear model (GLM) was used to assess the effect of altitude on area-corrected species richness (standard area = 100 km2), and a numerical classification of the elevational belts based on species richness was performed. Overall, richness at the three taxonomic levels decreased with elevation, but some individual families departed from this pattern. A sharp drop in species richness was observed at 1,800 m, and the dendrogram separated two elevational floristic groups at this elevation. The GLM revealed a significant negative effect of elevation on species richness. Despite this overall decreasing pattern for vascular plants along this extensive gradient, an examination of some family-specific patterns revealed the existence of other elevation–diversity relationships, indicating taxon-specific responses to elevation. The most noticeable discontinuity in species richness, at ca. 1,800 m, is likely related to a critical temperature isocline.

Keywords:

Altitudinal gradient Area effect Environmental-limitation hypothesis Habitat heterogeneity Oaxaca 

References

  1. Bachman S, Baker WJ, Brummit N, Dransfield J, Moat J (2004) Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27:299–310CrossRefGoogle Scholar
  2. Barthlott W, Hostert A, Kier G, Küper W, Kreft H, Mutke J, Rafiqpoor MD, Sommer JH (2007) Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 61:305–315CrossRefGoogle Scholar
  3. Becerra JX (2005) Timing the origin and expansion of the Mexican tropical dry forest. Proc Natl Acad Sci USA 102:10919–10923PubMedCrossRefGoogle Scholar
  4. Bhattarai KR, Vetaas OR, Grytnes JA (2004) Fern species richness along a central Himalayan elevational gradient, Nepal. J Biogeogr 31:389–400CrossRefGoogle Scholar
  5. Brown JH, Lomolino MV (1998) Biogeography, 2nd edn. Sinauer, SunderlandGoogle Scholar
  6. Cardelús CL, Colwell RK, Watkins JRJE (2006) Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. J Ecol 94:144–156CrossRefGoogle Scholar
  7. Colwell RK, Lees DC (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol 15:70–76PubMedCrossRefGoogle Scholar
  8. Crawley MJ, Harral JE (2001) Scale dependence in plant biodiversity. Science 291:864–868PubMedCrossRefGoogle Scholar
  9. Currie DJ (1991) Energy and large-scale patterns of animal- and plant-species richness. Am Nat 137:27–49CrossRefGoogle Scholar
  10. Currie DJ, Mittelbach GG, Cornell HV, Field R, Guégan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Prediction and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134CrossRefGoogle Scholar
  11. Fahr J, Kalko EKV (2011) Biome transitions as centres of diversity: habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography 34:177–195CrossRefGoogle Scholar
  12. Ferrusquía-Villafranca I (1993) Geology of Mexico: a synopsis. In: Ramamoorthy T, Bye R, Lot A, Fa J (eds) Biological diversity of Mexico: origins and distribution. Oxford University Press, New York, pp 3–107Google Scholar
  13. Fiedler K, Beck E (2008) Investigating gradients in ecosystem analysis. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador, ecological studies 198. Springer, Berlin, pp 49–54CrossRefGoogle Scholar
  14. Francis AP, Currie DJ (2003) A globally consistent richness–climate relationship for angiosperms. Am Nat 161:523–536PubMedCrossRefGoogle Scholar
  15. Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34CrossRefGoogle Scholar
  16. Grau O, Grytnes JA, Birks HJB (2007) A comparison of altitudinal species richness pattern of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeogr 34:1907–1915CrossRefGoogle Scholar
  17. Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains. Annu Rev Ecol Syst 8:83–107CrossRefGoogle Scholar
  18. Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300CrossRefGoogle Scholar
  19. Grytnes JA, Beaman JH (2006) Elevational species richness patterns for vascular plants for Mount Kinabalu, Borneo. J Biogeogr 33:1838–1849CrossRefGoogle Scholar
  20. Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159:294–304PubMedCrossRefGoogle Scholar
  21. Guégan J-F, Lek S, Oberdorff T (1998) Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391:382–384CrossRefGoogle Scholar
  22. Hamilton AC, Perrot RA (1981) A study of altitudinal zonation in the montane forest belt of Mt. Elgon, Kenya/Uganda. Vegetatio 45:107–125CrossRefGoogle Scholar
  23. Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117CrossRefGoogle Scholar
  24. Hemp A (2006) Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol 184:27–42CrossRefGoogle Scholar
  25. Herzog SK, Kessler M, Bach K (2005) The elevational gradient in Andean bird species richness at the local scale: a foothill peak and a high-elevation plateau. Ecography 28:209–222CrossRefGoogle Scholar
  26. Holbrook NM, Whitbeck JL, Mooney HA (1995) Drought responses of neotropical dry forest trees. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 243–276CrossRefGoogle Scholar
  27. Holdridge LR (1978) Ecología basada en zonas de vida. Instituto Interamericano de Cooperación para la Agricultura, San JoséGoogle Scholar
  28. Kappelle M, Zamora N (1995) Changes in woody species richness along an altitudinal gradient in Talamancan montane Quercus forests, Costa Rica. In: Churchill SP, Balslev H, Forero E, Luteyn JL (eds) Biodiversity and conservation of Neotropical montane forest. The New York Botanical Garden, New York, pp 135–148Google Scholar
  29. Kappelle M, van Uffelen J-G, Cleef AM (1995) Altitudinal zonation of montane Quercus forests along two transects in Chirripó National Park, Costa Rica. Vegetatio 119:119–153CrossRefGoogle Scholar
  30. Karger DN, Kluge J, Krömer T, Hemp A, Lehnert M, Kessler M (2011) The effect of area on local and regional elevational patterns of species richness. J Biogeogr 38:1177–1185CrossRefGoogle Scholar
  31. Kessler M (2000) Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecol 149:181–193CrossRefGoogle Scholar
  32. Kessler M (2002) The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels. J Biogeogr 29:1159–1165CrossRefGoogle Scholar
  33. Kessler M, Herzog SK, Fjeldsa J, Bach K (2001) Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes. Divers Distrib 7:61–77CrossRefGoogle Scholar
  34. Kitayama K (1992) An altitudinal transect study of vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–171CrossRefGoogle Scholar
  35. Körner C (1999) Alpine plant life. Springer, BerlinCrossRefGoogle Scholar
  36. Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514CrossRefGoogle Scholar
  37. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574PubMedCrossRefGoogle Scholar
  38. Kreft H, Köster N, Küper W, Nieder J, Barthlott W (2004) Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuní, Ecuador. J Biogeogr 31:1463–1476CrossRefGoogle Scholar
  39. Küper W, Kreft H, Nieder J, Köster N, Barthlott W (2004) Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. J Biogeogr 31:1477–1487CrossRefGoogle Scholar
  40. Lebrija-Trejos E, Meave JA, Poorter L, Pérez-García EA, Bongers F (2010) Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession. Perspect Plant Ecol Evol Syst 12:267–275CrossRefGoogle Scholar
  41. Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forests structure and composition on a large scale altitudinal gradient in Costa Rica. J Ecol 84:137–152CrossRefGoogle Scholar
  42. Linden HP (1991) Environmental correlates of patterns of species richness in the south-western Cape Province of South Africa. J Biogeogr 18:509–518CrossRefGoogle Scholar
  43. Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 10:3–13CrossRefGoogle Scholar
  44. Lorence DH, García-Mendoza A (1989) Oaxaca, Mexico. In: Campbell DG, Hammond HD (eds) Floristic inventory of tropical countries. The New York Botanical Garden, New York, pp 253–269Google Scholar
  45. Lovett JC (1999) Tanzanian forest tree plot diversity and elevation. J Trop Ecol 15:689–694CrossRefGoogle Scholar
  46. Markesteijn L, Poorter L (2009) Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J Ecol 97:311–325CrossRefGoogle Scholar
  47. Martin PH, Fahey TJ, Sherman RE (2011) Vegetation zonation in a Neotropical montane forest: environment, disturbance and ecotones. Biotropica 43:533–543CrossRefGoogle Scholar
  48. Murphy PT, Lugo AE (1995) Dry forests of Central America and the Caribbean. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 9–34CrossRefGoogle Scholar
  49. Mutke J, Barthlott W (2005) Patterns of vascular plant diversity at continental to global scales. Biol Skrifter 55:521–537Google Scholar
  50. Nieder J, Prosperí J, Michaloud G (2001) Epiphytes and their contribution to canopy diversity. Plant Ecol 153:51–63CrossRefGoogle Scholar
  51. Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–220PubMedCrossRefGoogle Scholar
  52. Ohsawa M, Nainggolan PHJ, Tanaka N, Anwar C (1985) Altitudinal zonation on Mount Kerinci, Sumatra: with comparisons to zonation in the temperate region of East Asia. J Trop Ecol 1:193–216CrossRefGoogle Scholar
  53. Palmer MW (1994) Variation in species richness: towards a unification of hypotheses. Folia Geobot Phytotaxon 29:511–530Google Scholar
  54. Pausas JG, Austin MP (2001) Patterns of plant species richness in relation to different environments: an appraisal. J Veg Sci 12:153–166CrossRefGoogle Scholar
  55. Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331CrossRefGoogle Scholar
  56. Rahbek C (1995) The elevation gradient of species richness: a uniform pattern? Ecography 18:200–205CrossRefGoogle Scholar
  57. Rahbek C (1997) The relationship among area, elevation, and regional species richness in neotropical birds. Am Nat 149:875–902PubMedCrossRefGoogle Scholar
  58. Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns. Ecol Lett 8:224–239CrossRefGoogle Scholar
  59. Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci USA 98:4534–4539PubMedCrossRefGoogle Scholar
  60. Rahbek C, Gotelli NJ, Colwell RK, Entsminger GL, Rangel TFLVB, Graves GR (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proc Roy Soc B-Biol Sci 274:165–174CrossRefGoogle Scholar
  61. Romdal TS, Grytnes J-A (2007) An indirect area effect on elevational species richness patterns. Ecography 30:440–448Google Scholar
  62. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  63. Rzedowski J (1978) Vegetación de México. Limusa, Mexico CityGoogle Scholar
  64. Salas-Morales SH, Saynes-Vásquez A, Schibli L (2003) Flora de la costa de Oaxaca: lista florística de la región de Zimatán. Bol Soc Bot Méx 72:21–58Google Scholar
  65. Sang W (2009) Plant diversity patterns and their relationship with soil and climatic factors along an altitudinal gradient in the middle Tianshan Mountain area, Xinjiang, China. Ecol Res 24:303–314CrossRefGoogle Scholar
  66. Tallens LA, Lovett JC, Hall JB, Hamilton AC (2005) Phylogenetic diversity of forest trees in the Usambara mountains of Tanzania: correlations with altitude. Bot J Linn Soc 149:217–228CrossRefGoogle Scholar
  67. Van Steenis CGG (1984) Floristic altitudinal zones in Malesia. Bot J Linn Soc 89:289–292CrossRefGoogle Scholar
  68. Vetaas OR, Grytnes JA (2002) Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob Ecol Biogeogr 11:291–301CrossRefGoogle Scholar
  69. Wohlgemuth T (1998) Modelling floristic species richness on a regional scale: a case study in Switzerland. Biodivers Conserv 7:159–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Sociedad para el Estudio de los Recursos Bióticos de Oaxaca, A.COaxacaMexico
  2. 2.Departamento de Ecología y Recursos Naturales, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxicoMexico

Personalised recommendations