Skip to main content

Patterns of bryophyte and vascular plant richness in European subalpine springs

Abstract

The diversity of spring habitats can be determined not only by local environmental conditions, but also by large-scale biogeographical effects. The effects can differ across various groups of organisms. We compared α-, β- and γ-diversity patterns of bryophytes and vascular plants of (sub)alpine springs in three contrasting mountain ranges: Alps (Switzerland), Balkans (Bulgaria), Western Carpathians (Slovakia, Poland). We used univariate and multivariate statistics to test for the effects of pH, conductivity, altitude, slope, mean annual temperature and annual precipitation on diversity patterns of both taxonomic groups and compared diversity patterns among the regions for particular pH and conductivity classes. We identified acidophyte and basiphyte, calcifuge and calcicole species using species response modelling. All regions displayed significant relationship between conductivity and α-diversity of vascular plants. Bulgaria showed the highest α-diversity of vascular plants for the middle part of the conductivity gradient. For both taxonomic groups, the β-diversity in the middle part of gradient was highest in Swiss Alps. The total species pool was lowest in Bulgaria. The percentage of basiphyte and calcicole species was highest in the Alps. In (sub)alpine springs, mineral richness was a better determinant of vascular plant α-diversity than pH, and the extent of the alpine area did not coincide with α-diversity. Observed inter-regional differences in diversity patterns could be explained by the different proportion of limestone bedrock and different biogeographic history. The differences in α-diversity between both taxonomic groups are presumably result of the different rates of adaptation processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Akatov V, Chefranov S, Akatova T (2005) The relationship between local species richness and species pool: a case study from the high mountains of the greater caucasus. Plant Ecol 181:9–22. doi:10.1007/sl.1258-004-5088-5

    Article  Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253. doi:10.1111/j.1541-0420.2005.00440.x

    PubMed  Article  Google Scholar 

  • Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate dispersion as a measure of beta diversity. Ecol Lett 9:683–693. doi:10.1111/j.1461-0248.2006.00926.x

    PubMed  Article  Google Scholar 

  • Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJB, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. doi:10.1111/j.1461-0248.2010.01552.x

    PubMed  Article  Google Scholar 

  • Bergamini A, Peintinger M (2002) Effects of light and nitrogen on morphological plasticity of the moss Calliergonella cuspidata. Oikos 96:355–363. doi:10.1034/j.1600-0706.2002.960217.x

    Article  Google Scholar 

  • Bragazza L, Gerdol R (2002) Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? J Veg Sci 13:473–482. doi:10.1111/j.1654-1103.2002.tb02074.x

    Article  Google Scholar 

  • Bruun HH, Moen J, Virtanen R, Grytnes JA, Oksanen L, Angerbjorn A (2006) Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J Veg Sci 17:37–46. doi:10.1658/1100-9233(2006)017[0037:EOAATO]2.0.CO;2

    Article  Google Scholar 

  • Bunn WA, Jenkins MA, Brown CB, Sanders NJ (2010) Change within and among forest communities: the influence of historic disturbance, environmental gradients, and community attributes. Ecography 33:425–434. doi:10.1111/j.1600-0587.2009.06016.x

    Google Scholar 

  • Cantonati M, Gerecke R, Bertuzzi E (2006) Springs of the Alps—sensitive ecosystems to environmental change: from biodiversity assessments to long-term studies. Hydrobiologia 562:59–96. doi:10.1007/s10750-005-1806-9

    Article  CAS  Google Scholar 

  • Cheshitev G, Kanchev I (eds) (1989) Geological map of Bulgaria, scale 1:500 000. Geological committee, Sofia

  • Chytrý M, Tichý L, Roleček J (2003) Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobot 38:429–442. doi:10.1007/BF02803250

    Article  Google Scholar 

  • Chytrý M, Danihelka J, Axmanová I, Božková J, Hettenbergerová E, Li CF, Rozbrojová Z, Sekulová L, Tichý L, Vymazalová M, Zelený D (2010) Floristic diversity of an eastern Mediterranean dwarf shrubland: the importance of soil pH. J Veg Sci 21:1125–1137. doi:10.1111/j.1654-1103.2010.01212.x

    Article  Google Scholar 

  • Conti E, Soltis DE, Harding TM, Schneider J (1999) Phylogenetic relationships of the Silver Saxifrages (Saxifraga, Sect. Ligulatae Haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol Phylogenet Evol 13:536–555. doi:10.1006/mpev.1999.0673

    PubMed  Article  CAS  Google Scholar 

  • Dufour A, Gadallah F, Wagner HH, Guisan A, Buttler A (2006) Plant species richness and environmental heterogeneity in a mountain landscape: effects of variability and spatial configuration. Ecography 29:573–584. doi:10.1111/j.0906-7590.2006.04605.x

    Article  Google Scholar 

  • During HJ, Van Tooren BF (1990) Bryophyte interactions with other plants. Bot J Linn Soc 104:79–98. doi:10.1111/j.1095-8339.1990.tb02212.x

    Article  Google Scholar 

  • Ewald J (2003) The calcareous riddle: Why are there so many calciphilous species in the central European flora? Folia Geobot 38:357–366. doi:10.1007/BF02803244

    Article  Google Scholar 

  • Fox JE, Srivastava DS (2006) Predicting local-regional richness relationships using island biogeography models. Oikos 113:376–382. doi:10.1111/j.2006.0030-1299.14768.x

    Article  Google Scholar 

  • Frahm J-P (2008) Diversity, dispersal and biogeography of bryophytes (mosses). Biodiv Conserv 17:277–284. doi:10.1007/s10531-007-9251-x

    Article  Google Scholar 

  • Glaser PH, Janssens JA, Siegel DI (1990) The response of vegetation to chemical and hydrological gradients in the Lost River peatland, northern Minnesota. J Ecol 78:1021–1048

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Grau O, Grytnes JA, Birks HJB (2007) A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J Biogeogr 34:1907–1915. doi:10.1111/j.1365-2699.2007.01745

    Article  Google Scholar 

  • Hájek M, Tichý L, Schamp BS, Zelený D, Roleček J, Hájková P, Apostolova I, Dítě D (2007) Testing the Species Pool Hypothesis for mire vegetation: exploring the influence of pH specialists and habitat history. Oikos 116:1311–1322. doi:10.1111/j.0030-1299.2007.15637.x

    Article  Google Scholar 

  • Hájek M, Roleček J, Cottenie K, Kintrová K, Horsák M, Poulíčková A, Hájková P, Fránková M, Dítě D (2011) Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal ability sampled in the same plots. J Biogeogr 9:1683–1693. doi:10.1111/j.1365-2699.2011.02503.x

    Google Scholar 

  • Hájková P, Hájek M (2003) Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationship to water and soil chemistry. Preslia 75:271–287

    Google Scholar 

  • Hájková P, Hájek M, Apostolova I (2006) Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role. Plant Ecol 184:111–130. doi:10.1007/s11258-005-9056-5

    Article  Google Scholar 

  • Hájková P, Hájek M, Apostolova I, Zelený D, Dítě D (2008) Shifts in the ecological behaviour of plant species between two distant regions: evidence from the base richness gradient in mires. J Biogeogr 35:282–294. doi:10.1111/j.1365-2699.2007.01793.x

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN (2009) Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J Anim Ecol 78:315–327. doi:10.1111/j.1365-2656.2008.01487

    PubMed  Article  Google Scholar 

  • Jurasinski G, Retzer V, Beierkuhnlein C (2009) Inventory, differentiation, and proportional diversity: a consistent terminology for quantifying species diversity. Oecologia 159:15–26. doi:10.1007/s00442-008-1190-z

    PubMed  Article  Google Scholar 

  • Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23. doi:10.1086/286054

    PubMed  Article  CAS  Google Scholar 

  • Koleff P, Gaston KJ (2002) The relationship between local and regional species richness and spatial turnover. Glob Ecol Biogeogr 11:363–375. doi:10.1046/j.1466-822x.2002.00302.x

    Article  Google Scholar 

  • Körner C (2002) Mountain biodiversity, its causes and function: an overview. In: Körner C, Spech EM (eds) Mountain biodiversity: a global assessment. Pathenon Publishing, London, pp 3–20

    Google Scholar 

  • Kozhuharov S (ed) (1992) Field guide to the vascular plants in Bulgaria. Naouka & Izkoustvo, Sofia

    Google Scholar 

  • Lauber K, Wagner G (2007) Flora Helvetica 4. Auflage.Paul Haupt, Bern

    Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  Google Scholar 

  • Lexa J, Bezák V, Elečko M, Mello J, Polák J, Potfaj M, Vozár J (eds) (2000) Geological map of West Carpathians and adjacent regions. Štátny Geologický Ústav Dyonýza Štúra, Bratislava

    Google Scholar 

  • Lieth H, Berlekamp J, Fuest S, Riediger S (eds) (1999) Climate diagram world atlas. CD-ROM, Backhuys Publishers, Leiden

    Google Scholar 

  • Mallen-Cooper J, Pickering CM (2008) Linear decline in exotic and native species richness along an increasing altitudinal gradient in the Snowy Mountains, Australia. Austral Ecol 33:684–690. doi:10.1111/j.1442-9993.2008.01835.x

    Article  Google Scholar 

  • Marhold K, Hindák F (eds) (1998) Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: Community Ecology Package. In: R Package Version 1.17–4. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Pärtel M (2002) Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83:2361–2366. doi:10.1890/0012-9658(2002)083[2361:LPDPAE]2.0.CO;2

    Google Scholar 

  • Pärtel M, Zobel M, Zobel K, van der Maarel E (1996) The species pool and its relation to species richness: Evidence from Estonian plant communities. Oikos 75:111–117

    Article  Google Scholar 

  • Qian H (2009) Beta diversity in relation to dispersal ability for vascular plants in North America. Glob Ecol Biogeogr 18:327–332. doi:10.1111/j.1466-8238.2009.00450.x

    Article  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205. doi:10.1111/j.1600-0587.1995.tb00341.x

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rozbrojová Z, Hájek M (2008) Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. Journal of Vegetation Science 19:613–620. doi:10.3170/2008-8-18416

    Article  Google Scholar 

  • Šály R, Šurina B (2002) Soils. In: Miklós E (ed) Landscape atlas of the Slovak Republic, 1st edn. Ministry of Environment of the Slovak Republic, Slovak Environmental Agency, Banská Bystrica, pp 105–111

    Google Scholar 

  • Schubiger-Bossard CM (1988) Die Vegetation des Rhonegletschervorfeldes, ihre Sukzession und naturräumliche Gliederung. Beitr Geobot Landesaufn Schweiz 64:1–228

    Google Scholar 

  • Sekulová L, Hájek M, Hájková P, Mikulášková E, Rozbrojová Z (2011) Alpine wetlands in the West Carpathians: vegetation survey and vegetation–environment relationships. Preslia 83:1–24

    Google Scholar 

  • Sjörs H, Gunnarsson U (2002) Calcium and pH in north and central Swedish mire waters. J Ecol 90:650–657. doi:10.1046/j.1365-2745.2002.00701.x

    Article  Google Scholar 

  • Soininen JMR, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30:3–12. doi:10.1111/j.0906-7590.2007.04817.x

    Google Scholar 

  • Spitale D, Petraglia A, Tomaselli M (2009) Structural equation modelling detects unexpected differences between bryophyte and vascular plant richness along multiple environmental gradients. J Biogeogr 36:745–755. doi:10.1111/j.1365-2699.2008.02039.x

    Article  Google Scholar 

  • Steiner AJ (2002) Die Vegetation der Gemeinde Zermatt. Beitr Geobot Landesaufn Schweiz 74:1–204

    Google Scholar 

  • Strohbach M, Audorff V, Beierkuhnlein C (2009) Drivers of plant species composition in siliceous spring ecosystems: groundwater chemistry, catchment traits or spatial factors? J Limnol 68:375–384. doi:10.3274/JL09-68-2-20

    Article  Google Scholar 

  • Swisstopo (2005) Geologische Karte der Schweiz 1:500’000. Bundesamt für Wasser und Geologie, Bern

    Google Scholar 

  • Szövényi P, Terracciano S, Ricca M, Shaw AJ (2008) Recent divergence, intercontinental dispersal and shared polymorphisms are shaping the genetic structure of amphi-Atlantic peatmoss populations. Mol Ecol 17:5364–5377. doi:10.1111/j.1365-294X.2008.04003.x

    PubMed  Article  Google Scholar 

  • Taft JB, Phillippe LR, Dietrich CH, Robertson KR (2011) Grassland composition, structure, and diversity patterns along major environmental gradients in the Central Tien Shan. Plant Ecol 212:1349–1361. doi:10.1007/s11258-011-9911-5

    Article  Google Scholar 

  • Tahvanainen T (2004) Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of northeastern Fennoscandian Shield. Folia Geobot 39:353–369

    Article  Google Scholar 

  • Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13:451–453. doi:10.1111/j.1654-1103.2002.tb02069.x

    Article  Google Scholar 

  • Tomaselli M, Spitale D, Petraglia A (2011) Phytosociological and ecological study of springs in Trentino (south-eastern Alps, Italy). J Limnol 70:23–53. doi:10.3274/JL11-70-S1-03

    Article  Google Scholar 

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33:23–45. doi:10.1111/j.1600-0587.2009.06148.x

    Article  Google Scholar 

  • Tyler G (2003) Some ecophysiological and historical approaches to species richness and calcicole/calcifuge behaviour—contribution to a debate. Folia Geobot 38:419–428. doi:10.2307/25134013

    Article  Google Scholar 

  • Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39:97–114

    Article  Google Scholar 

  • Vanderpoorten A, Devos N, Goffinet B, Hardy JO, Shaw AJ (2008) The barriers to oceanic island radiation in bryophytes: insights from the phylogeography of the moss Grimmia montana. J Biogeogr 35:654–663. doi:10.1111/j.1365-2699.2007.01802.x

    Article  Google Scholar 

  • Virtanen R, Ilmonen J, Paasivirta L, Muotka T (2009) Community concordance between bryophyte and insect assemblages in boreal springs: a broad-scale study in isolated habitats. Freshw Biol 54:1651–1662. doi:10.1111/j.1365-2427.2009.02212.x

    Article  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecol Monogr 30:279–338. doi:10.2307/1943563

    Article  Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Zobel M, van der Maarel E, Dupré C (1998) Species pool: the concept, its determination and significance for community restoration. Appl Veg Sci 1:55–66. doi:10.2307/1479085

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by long-term research programs at Masaryk University (Czech Ministry of Education, MSM 0021622416), the Institute of Botany, Academy of Sciences (AVZ0Z6005908) and by the Grant Agency of the Czech Republic (GD526/09/H025). We thank Ondřej Hájek who created the distribution map. We also gratefully acknowledge the comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Sekulová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sekulová, L., Hájek, M., Hájková, P. et al. Patterns of bryophyte and vascular plant richness in European subalpine springs. Plant Ecol 213, 237–249 (2012). https://doi.org/10.1007/s11258-011-9969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-011-9969-0

Keywords

  • Biogeographic patterns
  • Species pool hypothesis
  • Species response
  • Vegetation
  • Water chemistry