Skip to main content

Advertisement

Log in

Phylogenetic signals in the realized climate niches of Chinese grasses (Poaceae)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Explaining relationships between species richness and biogeographical patterns over a broad geographic scale is a central issue of biogeography and macroecology. We document the realized climate niches for grasses in China’s nature reserves and discuss its formation mechanism using grass richness data combined with climatic, physiological, and phylogenetic data. Our results suggest that climate niche structure of grasses is phylogenetically conservative for BEP (Bambusoideae, Ehrhartoideae, and Pooideae) and PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, and Danthonioideae) clades along temperature gradients and for Chloridoideae and Panicoideae along precipitation gradients. At the national scale, the divergence patterns of climate niches between two major clades are more distinguishable than between C3 and C4 grasses. High rates of climate niche evolution are found in C4 clades in the subtropical forest region. There appears to be a strong association between elevation gradients and grass diversity: the specific environmental conditions (e.g. energy) and the rapid shifts of climate conditions drive high grass diversification. Evolutionary conservatism of climate niches may be influenced by the specific adaptive ability to changing environmental conditions within NAD-ME/NADP-ME clades. Our results indicate that adaptations to major climate changes may be accomplished by C4 grass nodes of high climate niche evolutionary rates in China’s nature reserves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archetti M (2009) Phylogenetic analysis reveals a scattered distribution of autumn colours. Ann Bot 103:703–713

    Article  PubMed  Google Scholar 

  • Austin MP, Nicholls AO, Margules CR (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecol Monogr 60:161–177

    Article  Google Scholar 

  • Belsky AJ, Mwonga SM, Amundson RG, Duxbury JM, Ali AR (1993) Comparative effects of isolated trees on their undercanopy environments in high- and low-rainfall savannas. J Appl Ecol 30:143–155

    Article  Google Scholar 

  • Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, van der Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol Phylogenet Evol 47:488–505

    Article  PubMed  CAS  Google Scholar 

  • Cabido M, Pons E, Cantero JJ, Lewis JP, Anton A (2008) Photosynthetic pathway variation among C4 grasses along a precipitation gradient in Argentina. J Biogeogr 35:131–140

    Google Scholar 

  • Carmo-Silva AE, Francisco A, Powers SJ, Keys AJ, Ascensão L, Parry MAJ, Arrabaça MC (2009) Grasses of different C4 subtypes reveal leaf traits related to drought tolerance in their natural habitats: changes in structure, water potential, and amino acid content. Am J Bot 96:1222–1235

    Article  PubMed  CAS  Google Scholar 

  • Chazdon RL (1978) Ecological aspects of the distribution of C4 grasses in selected habitats of Costa Rica. Biotropica 10:265–269

    Article  Google Scholar 

  • Chen SL, Li DZ, Zhu GH, Wu ZL, Lu SL, Wang ZP, Ammann KH et al (2006) Poaceae (Gramineae). In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 22. Science Press, Beijing and Missouri Botanical Garden Press, St Louis, pp 1–653

    Google Scholar 

  • Collins RP, Jones MB (1985) The influence of climatic factors on the distribution of C4 species in Europe. Vegetatio 64:121–129

    Article  Google Scholar 

  • Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH et al (2009) Phylogenetic biome conservatism on a global scale. Nature 458:754–756

    Article  PubMed  CAS  Google Scholar 

  • Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proc Natl Acad Sci USA 105(Suppl. 1):11549–11555

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambautx A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:699–710

    Article  CAS  Google Scholar 

  • Edwards EJ, Smith SA (2010) Phylogenetic analyses reveal the shady history of C4 grasses. Proc Natl Acad Sci USA 107:2532–2537

    Article  PubMed  CAS  Google Scholar 

  • Edwards EJ, Still CJ (2008) Climate, phylogeny and the ecological distribution of C4 grasses. Ecol Lett 11:266–276

    Article  PubMed  Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consortium (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591

    Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Article  Google Scholar 

  • Epstein HE, Lauenroth WK, Burke IC, Coffin DP (1997) Productivity patterns of C3 and C4 functional types in the U.S. Great Plains. Ecology 78:722–731

    Google Scholar 

  • Ghannoum O, von Caemmerer S, Conroy JP (2002) The effect of drought on plant water use efficiency of nine NAD-ME and nine NADP-ME Australian C4 grasses. Funct Plant Biol 29:1337–1348

    Article  CAS  Google Scholar 

  • Giambelluca TW, Schroeder TA (1998) Climate. In: Juvik SP, Juvik JO (eds) Atlas of Hawai’i, 3rd edn. University of Hawai’i Press, Honolulu, pp 49–59

    Google Scholar 

  • Hattersley PW (1983) The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57:113–128

    Article  Google Scholar 

  • Hattersley PW (1986) Variations in photosynthetic pathways. In: Soderstrom RT, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institute Press, Washington, DC, pp 49–64

    Google Scholar 

  • Hattersley PW (1992) C4 photosynthetic pathway variation in grasses (Poaceae): its significance for arid and semi-arid lands. In: Chapman GP (ed) Grass evolution and domestication. Cambridge University Press, New York, pp 181–212

    Google Scholar 

  • Hattersley PW, Watson L (1992) Diversification of photosynthesis. In: Chapman GP (ed) Grass evolution and domestification. Cambridge University Press, New York, pp 38–116

    Google Scholar 

  • Hof C, Rahbek C, Araújo MB (2010) Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33:242–250

    Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Juvik SP, Juvik JO (1998) Atlas of Hawai’i, third edition edn. University of Hawai’i Press, Honolulu

    Google Scholar 

  • Kellogg EA (1999) Phylogenetic aspects of the evolution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, London, pp 411–444

    Chapter  Google Scholar 

  • Klink CA, Joly CA (1989) Identification and distribution of C3 and C4 grasses in open and shaded habitats in São Paulo State, Brazil. Biotropica 21:30–34

    Article  Google Scholar 

  • Kozak KH, Wiens JJ (2007) Climatic zonation drives latitudinal variation in speciation mechanisms. Proc R Soc Lond B 274:2995–3003

    Article  Google Scholar 

  • Liu Q, Ge XJ, Columbus JT, Chen WL (2009) Grass (Poaceae) richness patterns across China’s nature reserves. Plant Ecol 201:531–551

    Article  Google Scholar 

  • Lord J, Westoby M, Leishman M (1995) Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. Am Nat 146:349–364

    Article  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles 22:1–19

    Article  Google Scholar 

  • Nixon KC (2002) WinClada, version 1.00.08. Computer program published by the author, Ithaca, New York, USA. http://www.cladistics.com. Accessed 1 Dec 2008

  • Norušis MJ (2009) SPSS 17.0 Statistical procedures companion. Prentice Hall, New Jersey, USA

    Google Scholar 

  • O’Brien EM, Field R, Whittaker RJ (2000) Climatic gradients in woody plant (tree and shrub) diversity, water-energy dynamics, residual variation, and topography. Oikos 89:588–600

    Article  Google Scholar 

  • O’Meara BC, Ane C, Sanderson MJ, Wainwright PC (2006) Testing for different rates of continuous traits evolution using likelihood. Evolution 60:922–933

    PubMed  Google Scholar 

  • P’yankov VI, Mokronosov AT (1993) General trends in changes of the earth’s vegetation related to global warming. Russ J Plant Physiol 40:443–458

    Google Scholar 

  • P’yankov VI, Gunin PD, Tsoog S, Black CC (2000) C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia 123:15–31

    Article  Google Scholar 

  • P’yankov VI, Ziegler H, Akhani H, Deigele C, Lüttge U (2010) European plants with C4 photosynthesis: geographical and taxonomic distribution and relations to climate parameters. Bot J Linn Soc 163:283–304

    Article  Google Scholar 

  • Palmer MW, White PS (1994) Scale dependence and the species area relationship. Am Nat 144:717–740

    Article  Google Scholar 

  • Paruelo JM, Lauenroth WK (1996) Relative abundance of plant functional types in grasslands and shrublands of North America. Ecol Appl 6:1212–1224

    Article  Google Scholar 

  • Peterson PM, Romaschenko K, Johnson G (2010) A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Mol Phylogenet Evol 55:580–598

    Article  PubMed  CAS  Google Scholar 

  • Prendergast HDV, Hattersley PW, Stone NE (1987) New structure/biochemical associations in leaf blade of C4 grasses (Poaceae). Aust J Plant Physiol 14:403–420

    Article  CAS  Google Scholar 

  • Price JP (2004) Floristic biogeography of the Hawaiian Islands: influences of area, environment and paleography. J Biogeogr 31:487–500

    Article  Google Scholar 

  • Prinzing A, Durka W, Klotz S, Brandl R (2001) The niche of higher plants: evidence for phylogenetic conservatism. Proc R Soc Lond B 268:2383–2389

    Article  CAS  Google Scholar 

  • Rahbek C, Graves GR (2001) Multiscale assessment of patterns of avian species richness. Proc Natl Acad Sci USA 98:4534–4539

    Article  PubMed  CAS  Google Scholar 

  • Renvoize SA (1987) A survey of leaf-blade anatomy in grasses XI. Paniceae. Kew Bull 42:739–768

    Article  Google Scholar 

  • Roalson EH (2008) C4 Photosynthesis: differentiating causation and coincidence. Curr Biol 18:R167–R168

    Article  PubMed  CAS  Google Scholar 

  • Roe GH, Baker MB (2007) Why is climate sensitivity so unpredictable? Science 318:629–632

    Article  PubMed  CAS  Google Scholar 

  • Roure B, Rodriguez-Ezpeleta N, Phillipe H (2007) SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol Biol 7:S2

    Article  PubMed  Google Scholar 

  • Rundel PW (1980) The ecological distribution of C4 and C3 grasses in the Hawaiian islands. Oecologia 45:354–359

    Article  Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  Google Scholar 

  • Sage RF, Wedin DA, Li MR (1999a) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, London, pp 313–373

    Chapter  Google Scholar 

  • Sage RF, Li MR, Monson RK (1999b) The taxonomic distribution of C4 photosynthesis. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, London, pp 551–584

    Chapter  Google Scholar 

  • Sánchez-Ken JG, Clark LG (2010) Phylogeny and a new tribal classification of the Panicoideae s.l. (Poaceae) based on plastid and nuclear sequence data and structural data. Am J Bot 97:1732–1748

    Article  PubMed  Google Scholar 

  • Sánchez-Ken JG, Clark LG, Kellogg EA, Kay EE (2007) Reinstatement and emendation of subfamily Micrairoideae (Poaceae). Syst Bot 32:71–80

    Article  Google Scholar 

  • Shen L, Chen XY, Zhang X, Li YY, Fu CX, Qiu YX (2005) Genetic variation of Ginkgo biloba L. (Ginkgoaceae) based on cpDNA PCR-RFLPs: inference of glacial refugia. Heredity 94:396–401

    Article  PubMed  CAS  Google Scholar 

  • Soreng RJ, Davidse G, Peterson PM, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Morrone O (2009) Classification of New World grasses. http://www.tropicos.org/Project/CNWG. Accessed 2 Sep 2009

  • Still CJ, Berry JA, Collatz GJ, Defries RS (2003) The global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles 17:1006

    Article  Google Scholar 

  • Sun HQ (2004) Biodiversity analysis of Gramineae plants in Qinghai province, China. Pratacultural Sci 19:7–12

    Google Scholar 

  • Swenson NG (2009) Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS One 4:e4390

    Article  PubMed  Google Scholar 

  • Taub DR (2000) Climate and the US distribution of C4 grass subfamilies and decarboxylation variants of C4 photosynthesis. Am J Bot 87:1211–1215

    Article  PubMed  CAS  Google Scholar 

  • Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP (2010) Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol 185:780–791

    Article  PubMed  CAS  Google Scholar 

  • Teeri JA, Stowe LG (1976) Climatic patterns and the distribution of C4 grasses in North America. Oecologia 23:1–12

    Google Scholar 

  • Tofts R, Silvertown J (2000) A phylogenetic approach to community assembly from a local species pool. Proc R Soc Lond B 267:363–369

    Article  CAS  Google Scholar 

  • Ueno O, Sentoku N (2006) Comparison of leaf structure and photosynthetic characteristics of C3 and C4 Alloteropsis semialata subspecies. Plant Cell Environ 29:257–268

    Article  PubMed  CAS  Google Scholar 

  • Ueno O, Yoshimura Y, Sentoku N (2005) Variation in the activity of some enzymes of photorespiratory metabolism in C4 grasses. Ann Bot 96:863–869

    Article  PubMed  CAS  Google Scholar 

  • Vogel JC, Fuls EllisRP (1978) The geographical distribution of Kranz grasses in South Africa. S Afr J Sci 74:209–215

    Google Scholar 

  • Webb CO, Ackerly DD, McPeek M, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Evol Syst 33:475–505

    Article  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Yan BG, Wen WQ, Zhang J, Yang WQ, Liu Y, Huang X, Li ZB (2010) Plant community assembly rules across a subalpine grazing gradient in western Sichuan, China. Chin J Pl Ecol 34:1294–1302

    Google Scholar 

  • Yin LJ, Li MR (1997) A study on the geographic distribution and ecology of C4 plants in China. I. C4 plant distribution in China and their relation with regional climatic condition. Acta Ecol Sin 17:350–363

    Google Scholar 

  • Ying TS (2001) Species diversity and distribution pattern of seed plants in China. Biodivers Sci 9:393–398

    Google Scholar 

Download references

Acknowledgments

We thank China Meteorological Data Sharing Service System for accessing the digital climatic data. This study was supported by the National Natural Science Foundation of China (No. 30700043), the Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Chinese Academy of Sciences (No. 200922), the Chinese Government Scholarship to QL (No. 2008491004), and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-J-28). We also thank two anonymous reviewers for their constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Liu or Xue-jun Ge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Peterson, P.M. & Ge, Xj. Phylogenetic signals in the realized climate niches of Chinese grasses (Poaceae). Plant Ecol 212, 1733–1746 (2011). https://doi.org/10.1007/s11258-011-9946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-011-9946-7

Keywords

Navigation