Plant Ecology

, 212:1501 | Cite as

Recruitment dynamics of two low-density neotropical multiple-use tree species

  • Cristina Herrero-Jáuregui
  • Carmen García-Fernández
  • Plinio L. J. Sist
  • Miguel A. Casado


In the present study, we describe the temporal and spatial variability in recruitment, growth, and mortality rates of seedlings and saplings of two low-density neotropical tree species, Dipteryx odorata and Copaifera reticulata in Eastern Amazonia, Brazil. As both species have important timber and non-timber uses, for each species we compare regeneration parameters among different management scenarios (sites used for timber logging, non-timber product extraction, and undisturbed forests). Results suggest that both species share similar natural regeneration characteristics. These include temporally and spatially asynchronous germination, existence of individuals that have more abundant and frequent fruit production than the average of the population and a positive influence of the mother tree crown on seedling and sapling density. The management activities analyzed did not influence the regeneration parameters of both species, which suggests that timber logging the way it was performed and current rates of D. odorata seed gathering and C. reticulata tapping at the study site are not sufficiently intense to threaten species population. However, some species characteristics, such as their reproductive strategies, light-demanding syndromes, low-dispersal ranges, and high-mortality rates of seedlings make both species vulnerable to exploitation.


Amazonia Copaifera reticulata Dipteryx odorata NTFP extraction Timber logging 


  1. Alencar JDC (1984) Forestry studies of a natural population of Copaifera multijuga Leguminosae in Central Amazonia 3. Spatial distribution of pre-existent natural regeneration. Acta Amazonica 14:255–279Google Scholar
  2. Alvarez-Clare S, Kitajima K (2009) Susceptibility of tree seedlings to biotic and abiotic hazards in the understory of a moist tropical forest in Panama. Biotropica 41:47–56CrossRefGoogle Scholar
  3. Augspurger CK (1983) Offspring recruitment around tropical trees—Changes in cohort distance with time. Oikos 40:189–196CrossRefGoogle Scholar
  4. Clark DA, Clark DB (1984) Spacing dynamics of a tropical rain-forest tree—Evaluation of the Janzen-Connell model. Am Nat 124:769–788CrossRefGoogle Scholar
  5. Clark DA, Clark DB (1992) Life-history diversity of canopy and emergent trees in a neotropical rain-forest. Ecol Monogr 62:315–344CrossRefGoogle Scholar
  6. Comita LS, Aguilar S, Pérez R, Lao S, Hubbell SP (2007) Patterns of woody plant species abundance and diversity in the seedling layer of a tropical forest. J Veg Sci 18:163–174CrossRefGoogle Scholar
  7. Condit R, Sukumar R, Hubbell SP, Foster RB (1998) Predicting population trends from size distributions, a direct test in a tropical tree community. Am Nat 152:495–509PubMedCrossRefGoogle Scholar
  8. Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: den Boer PJ, Gradwell GR (eds) Dynamics of populations. Center for Agricultural Publications and Documentation, Wageningen, pp 298–310Google Scholar
  9. Connell JH, Green PT (2000) Seedling dynamics over thirty-two years in a tropical rain forest tree. Ecology 81:568–584CrossRefGoogle Scholar
  10. Da Silva Dias A (2001) Consideraciones sociales y silviculturales para el manejo forestal diversificado en una comunidad ribereña en la “Floresta Nacional do Tapajós”, Amazonía Brasileña. Dissertation, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa RicaGoogle Scholar
  11. Da Silva Dias A, Campos JJ, Villalobos Soto R, Louman B, Gonçalvez L (2002) Manejo forestal diversificado en una comunidad ribereña de la Amazonía brasileña: consideraciones sociales y silviculturales. Revista Forestal Centroamericana 38:78–84Google Scholar
  12. Denslow JS (1980) Notes on the seedling ecology of a large-seeded species of Bombacaceae. Biotropica 12:220–222CrossRefGoogle Scholar
  13. Forget PM, Rankin de Merona JM, Julliot C (2001) The effects of forest type, harvesting and stand refinement on early seedling recruitment in a tropical rain forest. J Trop Ecol 17:593–609CrossRefGoogle Scholar
  14. Fredericksen TS, Mostacedo B (2000) Regeneration of timber species following selection logging in a Bolivian tropical dry forest. For Ecol Manag 131:47–55CrossRefGoogle Scholar
  15. Fredericksen TS, Putz FE (2003) Silvicultural intensification for tropical forest conservation. Biodivers Conserv 12:1445–1453CrossRefGoogle Scholar
  16. Fredericksen TS, Justiniano MJ, Mostacedo B, Kennard D, McDonald L (2000) Comparative regeneration ecology of three leguminous timber species in a Bolivian tropical dry forest. New Forest 20:45–64CrossRefGoogle Scholar
  17. Gebrehiwot K, Muys B, Haile M, Mitloehner R (2003) Introducing Boswellia Papyrifera (Del.) Hochst and Its Non-Timber Forest Product, Frankincense. Int For Rev 5:348–353Google Scholar
  18. Guariguata MR, Pinard MA (1998) Ecological knowledge of regeneration from seed in neotropical forest trees: implications for natural forest management. For Ecol Manag 112:87–99CrossRefGoogle Scholar
  19. Guariguata MR, Licona JC, Mostacedo B, Cronkleton P (2009) Damage to Brazil nuts trees (Bertholletia excelsa) during selective timber harvesting in Northern Bolivia. For Ecol Manag 258:788–793CrossRefGoogle Scholar
  20. Hall P, Bawa K (1993) Methods to assess the impact of extraction of non-timber tropical forest products on plant population. Econ Bot 47:234–247CrossRefGoogle Scholar
  21. Herrera CM, Jordano P, López Soria L, Amat JA (1994) Recruitment of a mast-fruiting, bird-dispersed tree—Bridging frugivore activity and seedling establishment. Ecol Monogr 64:315–344CrossRefGoogle Scholar
  22. Herrero-Jáuregui C (2009) Gestión integrada de los recursos forestales en el bosque tropical húmedo: ecología de dos especies de uso múltiple. Dissertation, Universidad Complutense de MadridGoogle Scholar
  23. Herrero-Jáuregui C, García-Fernández C, Sist P, Casado MA (2009) Conflict of use for multi-purpose tree species in the state of Pará, eastern Amazonia, Brazil. Biodivers Conserv 18:1019–1044CrossRefGoogle Scholar
  24. Hubbell S, Foster R (1986) Commonness and rarity in a neotropical forest: implications for tropical tree conservation. In: Soule M (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 205–231Google Scholar
  25. Hurtt GC, Pacala SW (1995) The consequences of recruitment limitation—Reconciling chance, history and competitive differences between plants. J Theor Biol 176:1–12CrossRefGoogle Scholar
  26. Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528CrossRefGoogle Scholar
  27. Kainer KA, Wadt LHO, Staudhammer CL (2007) Explaining variation in Brazil nut fruit production. For Ecol Manag 250:244–255CrossRefGoogle Scholar
  28. Langenheim JH (2003) Plant resins: chemistry, evolution, ecology and ethnobotany. Timber Press, PortlandGoogle Scholar
  29. Martins-da-Silva RCV (2006) Taxonomía das espécies de Copaifera L. (Leguminosae- Caesalpinioideae) ocorrentes na Amazônia Brasileira. Dissertation, Universidade Federal do Rio de JaneiroGoogle Scholar
  30. Maués MM (2006) Estratégias reprodutivas de espécies arbóreas e a sua importância para o manejo e conservação florestal: Floresta Nacional do Tapajós (Belterra-PA). Dissertation, Universidade de BrasíliaGoogle Scholar
  31. Menton M (2003) Effects of logging on non-timber forest product extraction in the Brazilian Amazon: community perceptions of change. Int For Rev 5:97–105CrossRefGoogle Scholar
  32. Peres CA, Baider C, Zuidema PA et al (2003) Demographic threats to the sustainability of Brazil nut exploitation. Science 302:2112–2114PubMedCrossRefGoogle Scholar
  33. Pinard MA, Putz FE, Tay J, Sullivan TE (1995) Creating timber harvest guidelines for a reduced impact logging project in Malaysia. J For 93:41–45Google Scholar
  34. Procópio LC, RdS Secco (2008) The importance of botanical identification in forest inventories: the example of “tauari” - Couratari spp. and Cariniana spp., Lecythidaceae - in two timber areas of the State of Para. Acta Amazonica 38(1):31–42CrossRefGoogle Scholar
  35. Rijkers T, Ogbazghi W, Wessel M, Bongers F (2006) The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol 43:1188–1195CrossRefGoogle Scholar
  36. Salick J, Mejia A, Anderson T (1995) Non-timber forest products integrated with natural forest management, Rio San Juan, Nicaragua. Ecol Appl 5:878–895CrossRefGoogle Scholar
  37. Sampaio PTB (1999) Copaíba: Copaifera multijuga. In: Clay JW, Clement CR, Sampaio PTB (eds) Biodiversidade Amazônica: Exemplos e Estratégias de Utilização. INPA, Manaus, pp 207–215Google Scholar
  38. Schulze M (2003) Ecology and behaviour of nine timber tree species in Pará, Brazil: links between species life history and forest management and conservation. Dissertation, Pennsylvania State UniversityGoogle Scholar
  39. Schulze M, Grogan J, Landis RM, Vidal E (2008) How rare is too rare to harvest? Management challenges posed by timber species occurring at low densities in the Brazilian Amazon. For Ecol Manag 256:1443–1457CrossRefGoogle Scholar
  40. Soehartono T, Newton AC (2000) Conservation and sustainable use of tropical trees in the genus Aquilaria I. Status and distribution in Indonesia. Biol Conserv 96:83–94CrossRefGoogle Scholar
  41. Synnott T (1979) A manual of permanent plot procedure for tropical rainforests. Commonwealth Forestry Institute, OxfordGoogle Scholar
  42. Ticktin T (2004) The ecological implications of harvesting non-timber forest products. J Appl Ecol 41:11–21CrossRefGoogle Scholar
  43. Uchida T, Campos MAA (2000) Influência do sombreamento no crescimento de mudas de cumaru (Dipteryx odorata (Aubl.) Willd.-Fabaceae) cultivadas em viveiro. Acta Amazonica 30(1):107–114Google Scholar
  44. Vander Wall SB (2001) The evolutionary ecology of nut dispersal. Bot Rev 67:74–117CrossRefGoogle Scholar
  45. Wadt LHO, Kainer KA, Gomes-Silva DAP (2005) Population structure and nut yield of a Bertholletia excelsa stand in Southwestern Amazonia. For Ecol Manag 211:371–384CrossRefGoogle Scholar
  46. Wadt LHO, Kainer KA, Staudhammer CL, Serrano ROP (2008) Sustainable forest use Brazilian extractive reserves: natural regeneration of Brazil nut in exploited populations. Biol Conserv 141:332–346CrossRefGoogle Scholar
  47. Wassie A, Sterck FJ, Teketay D, Bongers F (2009) Tree regeneration in Church Forests of Ethiopia: effects of microsites and management. Biotropica 41:110–119CrossRefGoogle Scholar
  48. Whitmore TC (1989) Canopy gaps and the two major groups of forest trees. Ecology 70:536–538CrossRefGoogle Scholar
  49. Zhang L, Brockelman WY, Allen MA (2008) Matrix analysis to evaluate sustainability: the tropical tree Aquilaria crassna, a heavily poached source of agarwood. Biol Conserv 141:1676–1686CrossRefGoogle Scholar
  50. Zuidema PA, Boot RGA (2002) Demography of the Brazil nut tree (Bertholletia excelsa) in the Bolivian Amazon. Impact of seed extraction on recruitment and population dynamics. J Trop Ecol 18:1–31CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Cristina Herrero-Jáuregui
    • 1
    • 2
  • Carmen García-Fernández
    • 2
    • 3
  • Plinio L. J. Sist
    • 4
  • Miguel A. Casado
    • 1
  1. 1.Departamento de Ecología, Facultad de BiologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Convênio Embrapa-CIRAD, Embrapa Amazônia OrientalParáBrazil
  3. 3.European Research Council Executive AgencyBrusselsBelgium
  4. 4.Cirad-ES, UR (B&SEF) “Biens et Services des Ecosystèmes Forestiers tropicaux”Montpellier Cedex 5France

Personalised recommendations