Skip to main content

Advertisement

Log in

To what extent does land-use affect relationships between the distribution of woody species and climatic change? A case study along an aridity gradient in western Burkina Faso

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The study aims at evaluating how land-use modifies the link between the observed distribution of species and the climatic variability and at detecting species involved in that modification. The area studied covers the phytogeographical transition between the South-Sudanian sector and the North-Sudanian sector in western Burkina Faso. It lies along an aridity gradient, of which the aridity index (UNESCO-MAB) ranges from 0.363 to 0.533. The data studied were derived from observations performed on 192 woody species in 603 vegetation survey plots inside and outside protected areas. The species turn-over (β diversity) and the mutual information were assessed along the aridity gradient inside protected areas on one hand and outside protected areas on the other. Our study shows that the statistical links between the geographical distributions of species and the aridity gradient differ according to whether the observations are performed inside or outside the protected areas. Anthropogenic disturbances, mainly agricultural in the region of study, result in a decrease in the β diversity and in the average mutual information between the distribution of all the woody species and the climatic gradient. Moreover, the variation in mutual information differs according to the species: it diversely decreases with agricultural land-use for most of them, but increases for some. Thus, land-use leads to species-specific changes in the realised climatic niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118

    Article  Google Scholar 

  • Austin MP, Cunningham RB, Fleming PM (1984) New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Plant Ecol (Vegetatio) 55:11–27

    Article  Google Scholar 

  • Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5:537–555

    Article  PubMed  CAS  Google Scholar 

  • Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. http://purl.oclc.org/estimates

  • Couteron P (1996) Les secteurs intermédiaires entre domaines soudanien et sahélien en Afrique occidentale: simples transitions ou réalité à part entière? In: Guillaumet JL, Belin M, Puig H (eds) Phytogéographie tropicale: réalités et perspectives. ORSTOM, Paris, pp 39–50

    Google Scholar 

  • Daget P, Godron M (1982) Analyse fréquentielle de l’écologie des espèces dans les communautés. Masson, Paris, p 163p

    Google Scholar 

  • Dale H (1997) The relationship between land-use change and climate change. Ecol Appl 7:753–769

    Article  Google Scholar 

  • De Chazal J, Rounsevell MDA (2009) Land-use and climate change within assessments of biodiversity change: a review. Global Environ Chang 19:306–315

    Article  Google Scholar 

  • Devineau JL (2000) Écologie des principales espèces ligneuses alimentaires et fourragères dans un système culture–jachère (sud-ouest du Burkina Faso). In: Floret Ch, Pontanier R (eds) La jachère en Afrique tropicale. John Libbey Eurotext, Paris, pp 441–450

    Google Scholar 

  • Devineau JL (2005) Generalist versus specialist: a contrasted sociology of woody and herbaceous species in a fallow-land rotation system in the West African savannah (Bondoukuy, Western Burkina Faso). Phytocoenologia 35:53–78

    Article  Google Scholar 

  • Devineau JL, Aurouet A, Douanio M, Hladik A (2008) Changes in the availability and uses of wild yams according to climatic dryness and land-cover in Western Burkina Faso (West Africa): a joint ecological and ethno-botanical approach using GIS and remote sensing. Biodivers Conserv 17:1937–1963

    Article  Google Scholar 

  • Devineau JL, Fournier A, Nignan S (2009) “Ordinary biodiversity” in western Burkina Faso (West Africa): what vegetation do the state forests conserve? Biodivers Conserv 18:2075–2099

    Article  Google Scholar 

  • Devineau JL, Fournier A, Nignan S (2010) Savanna fire regimes assessment with MODIS fire data: their relationships to land cover and plant species distribution in Western Burkina Faso (West Africa). J Arid Environ. doi:10.1016/j.jaridenv.2010.03.009

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • FAO (2001) FRA 2000. Global Ecological Zoning for the Global Forest Resources Assessment 2000. Final Report, Working Paper 56, Rome

  • Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9:1466–1481

    Article  Google Scholar 

  • Fontès J, Guinko S (1995) Carte de la végétation et de l’occupation du sol (Burkina Faso). Note explicative. Laboratoire d’Écologie Terrestre, Institut de la Carte Internationale de la Végétation. CNRS, Université de Toulouse III (France)/Institut du Développement Rural, Faculté des Sciences et Techniques, Université de Ouagadougou (Burkina Faso)

  • Fournier A, Floret Ch, Gnahoua GM (2001) Végétation des jachères et succession post-culturale en Afrique tropicale In: Floret Ch, Pontanier R (eds) La jachère en Afrique tropicale. De la jachère naturelle à la jachère améliorée. Le point des connaissances, vol 2. John Libey Eurotext, Paris, pp 123–168

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geog 19:474–499

    Article  Google Scholar 

  • Gauch HG Jr, Whittaker RH (1972) Coenocline simulation. Ecology 53:446–451

    Article  Google Scholar 

  • Gros G, Chessel D (1982) Un test exact de comparaison de deux moyennes de variables discrètes: utilisation en toxicologie. Biom Praxim 12:117–130

    Google Scholar 

  • Guinko S (1984) Végétation de la Haute-Volta. Thèse Doctorat d’Etat ès Sciences Naturelles, Univ Bordeaux

  • Hansen AJ, Neilson RP, Dale VH, Flather CH, Iverson LR, Currie DJ, Shafer S, Cook R, Bartlein PJ (2001) Global change in forests: responses of species, communities, and biomes. Bioscience 51:765–779

    Article  Google Scholar 

  • Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105:367–368

    Article  PubMed  CAS  Google Scholar 

  • IWMI (2006) Climate and water atlas. http://www.iwmi.cgiar.org/WAtlas/Default.aspx. Accessed 12 Mar 2010

  • Kadmon R, Danin A (1999) Distribution of plant species in Israel in relation to spatial variation in rainfall. J Veg Sci 10:421–432

    Article  Google Scholar 

  • Kiéma S, Fournier A (2007) Utilisation de trois aires protégées par l’élevage extensif. In: Fournier A, Sinsin B, Mensah GA (eds) Quelles aires protégées pour l’Afrique de l’Ouest? Conservation de la biodiversité et développement, IRD, Paris, pp 498–506

  • Koch GW, Vitousek PM, Steffen WL, Walker BH (1995) Terrestrial transects for global change research. Plant Ecol (Vegetatio) 121:53–65

    Article  Google Scholar 

  • Köppen W (1936) Das Geographisches System der Klimate. In: Geiger R, Köppen W (eds) Handbuch der Klimatologie. Gebrüder Borntraeger, Berlin

    Google Scholar 

  • Laclavère G (1993) Atlas du Burkina faso, 2nd edn. Editions Jeune Afrique, Paris, p 54p

    Google Scholar 

  • Lambin EF, Rounsevell MDA, Geist HJ (2000) Are agricultural land-use models able to predict changes in land-use intensity? Agr Ecosyst Environ 82:321–331

    Article  Google Scholar 

  • Lawesson JE (1997) Effects of species partition on explanatory variables in direct gradient analysis: a case study from Senegal. J Veg Sci 8:409–414

    Article  Google Scholar 

  • Li W (1990) Mutual information functions versus correlation functions. J Stat Phys 60:823–837

    Article  Google Scholar 

  • Lowry R (2008) Concepts and applications of inferential statistics. http://faculty.vassar.edu/lowry/VassarStats.html. Accessed 12 Mar 2010

  • New M, Lister D, Hulme M, Makin I (2002) High-resolution data set of surface climate over global land areas. Clim Res 21:1–25

    Article  Google Scholar 

  • Nicholson SE, Some B, Kone B (2000) An analysis of recent rainfall conditions in West Africa, including the rainy seasons of the 1997 El Niño and the 1998 La Niña years. J Clim 13:2628–2640

    Article  Google Scholar 

  • Ouédraogo SJ, Devineau JL (1996) Rôle de la jachère dans la reconstitution du parc à karité (Butyrospermum paradoxum (C F Gaertn.) Hepper) dans l’Ouest du Burkina Faso. In: Actes de l’atelier “La jachère lieu de production” Bobo, Dioulasso 2, 4 octobre 1996. Projet CEE “Amélioration et gestion de la jachère en Afrique de l’Ouest”, Projet 7 ACP RPR 269. CORAF, pp 81–87

  • Paturel J, Ouédraogo M, Servat E, Mahe G, Dezetter A, Boyer J (2003) The concept of rainfall and streamflow normals in west and central Africa in a context of climatic variability. Hydrol Sci J 481:125–137

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Prinzing A, Durka KlotzS, Brandl R (2002) Geographic variability of ecological niches of plant species: are competition and stress relevant. Ecography 25:721–729

    Article  Google Scholar 

  • Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703

    Article  Google Scholar 

  • Reiter K, Hülber K, Grabherr G (2003) Semi-objective sampling strategies as one basis for a vegetation survey. In: Visconti G, Beniston M, Iannorelli ED, Barba D (eds) Global change and protected areas. Springer, Netherlands, pp 219–228

    Chapter  Google Scholar 

  • Retuerto R, Carballeira A (2004) Estimating plant responses to climate by direct gradient analysis and geographic distribution analysis. Plant Ecol 170:185–202

    Article  Google Scholar 

  • Romane F (1972) Utilisation de l’analyse multivariable en Phytoécologie. Investigación Pesquera 36:131–139

    Google Scholar 

  • Sawadogo L, Tiveau D, Nygård R (2005) Influence of selective tree cutting, livestock and prescribed fire on herbaceous biomass in the savannah woodlands of Burkina Faso, West Africa. Agr Ecosyst Environ 105:335–345

    Article  Google Scholar 

  • Scheller RM, Mladenoff DJ (2005) A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and projected changes to forest composition and biomass in northern Wisconsin, USA. Global Change Biol 11:307–321

    Article  Google Scholar 

  • Steuer R, Kurths J, Daub CO, Weise J, Selbig J (2002) The mutual information: detecting and evaluating dependencies between variables. Bioinformatics 18(Suppl 2):S231–S240

    Article  PubMed  Google Scholar 

  • Thiombiano A (2005) Les Combretaceae du Burkina Faso: taxonomie, écologie, dynamique et régénération des espèces. Thèse de Doctorat, Université de Ouagadougou, 290 p

  • Thiombiano A, Schmidt M, Kreft H, Guinko S (2006) Influence of the climatic gradient on the distribution of Combretaceae species in Burkina Faso (West Africa). Candollea 61:189–213

    Google Scholar 

  • Thioulouse J, Chessel D, Dolédec S, Olivier JM (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Article  Google Scholar 

  • UNESCO (1977) Map of the world distribution of arid regions: explanatory note. MAB Technical Notes 7. UNESCO, Paris, 54 pp + map

  • Westman WE (1991) Measuring realized niche spaces: climatic response of chaparral and coastal sage scrub. Ecology 72:1678–1684

    Article  Google Scholar 

  • Wittig R, Devineau JL, Fournier A (2004a) L’importance du genre Acacia L. (Mimosaceae) pour la végétation du secteur soudanien du Burkina Faso. Etudes flor. vég. Burkina Faso 8:45–50

    Google Scholar 

  • Wittig R, Schmidt M, Thiombiano A (2004b) Cartes de distribution des espèces du genre Acacia L. au Burkina Faso. Etudes flor. vég. Burkina Faso 8:19–26

    Google Scholar 

  • Wittig R, König K, Schmidt M, Szarzynski J (2007) A study of climate change and anthropogenic impacts in West Africa. Environ Sci Pollut Res 14:182–189

    Article  Google Scholar 

  • Yamaguchi J (2002) Rainfall decline in western Africa in relation to the desertification. In: Shimizu H (ed) Integration and regional researches to combat desertification—present state and future prospect—the 16th Global Environment. Tsukuba, Japan, pp 264–268

    Google Scholar 

  • Zurell D, Jeltsch F, Dormann C, Schröder B (2009) Static species distribution models in dynamically changing systems: how good can predictions really be? Ecography 32:733–744

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the UMR 7206 of “Centre National de la Recherche Scientifique” (CNRS), by the UR 136 of the “Institut de Recherche pour le Développement” (IRD) and by the Cooperation for Academic and Scientific Research (CORUS 6075). We thank Mr. Saibou Nignan for field assistance, Mrs Deborah Taylor and Mrs Gylda Mudry for linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Devineau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devineau, JL. To what extent does land-use affect relationships between the distribution of woody species and climatic change? A case study along an aridity gradient in western Burkina Faso. Plant Ecol 212, 959–973 (2011). https://doi.org/10.1007/s11258-010-9877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9877-8

Keywords

Navigation