Skip to main content
Log in

Is there environmental differentiation in the Quercus-dominated forests of west-central Mexico?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Detailed information on 38 species and 26 environmental variables was recorded from a network of 86 permanent plots across a geographical range of 10 km, in order to determine the patterns of floristic composition in Quercus-dominated forests; to elucidate environmental differentiation in such forests; and to determine whether species are partitioning their environment. To examine likely patterns of floristic composition, a data matrix expressed as relative volume + relative density was used to run non-metric multidimensional scaling. Canonical correspondence analysis extracted the environmental variation that best correlates with the observed patterns of floristic composition. Our results indicate that congeneric Quercus individuals represent the largest proportion of the species pool in the study plots. They coexist with other species having similar ecological requirements in at least three distinct floristic groups. Examination of the two largest groups and their species compositions reveals that one floristic gradient runs across the most xeric zone of the study area, and the second major floristic gradient runs across a mesic zone. The most important environmental variable explaining the observed patterns of floristic composition is altitude, although partial canonical correspondence analysis suggests that micro-habitat heterogeneity (catena position and canopy maturity) was most significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida AM, Prado PI, Lewinsohn T (2004) Geographical distribution of Eupatorieae (Asteraceae) in South-eastern and South Brazilian mountain ranges. Plant Ecol 174:163–181

    Article  Google Scholar 

  • Beatty SW (1984) Influence of microtopography and canopy species on spatial patterns of forest understory plants. Ecology 65:1406–1419

    Article  Google Scholar 

  • Bell G, Lechowicz MJ, Waterway MJ (2000) Environmental heterogeneity and species diversity of forest sedges. J Ecol 88:67–87

    Article  Google Scholar 

  • Bowman DMJS, Minchin PR (1987) Environmental relationships of woody vegetation patterns in the Australian Monsoon Tropics. Aust J Bot 35:151–169

    Article  Google Scholar 

  • Brais S, Camiré C, Bergeron Y, Paré D (1995) Changes in nutrient availability and forest floor characteristics in relation to stand age and forest composition in the southern part of the boreal forest of northwestern Quebec. For Ecol Manag 76:181–189

    Article  Google Scholar 

  • Collins BS, Battaglia LL (2002) Microenvironmental heterogeneity and Quercus michauxxi regeneration in experimental gaps. For Ecol Manag 155:279–290

    Article  Google Scholar 

  • Cuevas-Guzmán R, Benz BF, Jardel PE (1997) Sierra de Manantlán. In: Heywood DS, Herrera-MacBryde O, Villalobos J, Hamilton AC (eds) Centres of plant diversity. World Conservation Union-World Wildlife Fund, Washington, pp 158–161

    Google Scholar 

  • Dalberg Poulsen A, Tuomisto H, Blaslev H (2006) Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica 38:468–478

    Article  Google Scholar 

  • Fekedulegn D, Hicks RR Jr, Colbert JJ (2003) Influence of topographic aspect, precipitation and drought on radial growth of four major tree species in an Appalachian watershed. For Ecol Manag 177:409–425

    Article  Google Scholar 

  • Forcier LK (1975) Reproductive strategies and the co-occurrence of climax tree species. Science 189:808–810

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt F, Foster DR (2002) Physiographical and historical effects on forest vegetation in central New England, USA. J Biogeogr 29:1421–1437

    Article  Google Scholar 

  • Gilbert B, Lechowicz M (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proc Natl Acad Sci USA 101:7651–7656

    Article  CAS  PubMed  Google Scholar 

  • Gotelli N, McCabe D (2002) Species co-occurrence: a meta-analysis of J.M. Diamond’s assembly rules model. Ecology 83:2091–2096

    Article  Google Scholar 

  • Guo Q (1998) Microhabitat differentiation in Chihuahuan desert plant communities. Plant Ecol 139:71–80

    Article  Google Scholar 

  • Hardy O, Sonké B (2004) Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: assessing the role of limited dispersal and niche differentiation. For Ecol Manag 197:191–202

    Article  Google Scholar 

  • Hausdorf B, Henning C (2007) Null model test of clustering of species, negative co-occurrence patterns and nestedness in meta-communities. Oikos 116:818–828

    Article  Google Scholar 

  • Heikkinen RK, Birks HJB, Kalliola R (1998) A numerical analysis of the mesoscale distribution patterns of vascular plants in the subartic Kevo Nature Reserve, northern Finland. J Biog 25:123–146

    Article  Google Scholar 

  • Hemp A (2006) Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. Plant Ecol 184:27–42

    Article  Google Scholar 

  • Hirayama K, Sakimoto M (2003) Spatial distribution of canopy and subcanopy species along a sloping topography in a cool-temperate conifer-hardwood forest in the snowy region of Japan. Ecol Res 18:443–454

    Article  Google Scholar 

  • Hofer U, Bersier L-F, Borcard D (2004) Relating niche and spatial overlap at the community level. Oikos 106:366–376

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Husch B, Miller CI, Beers TW (1982) Forest mensuration. Wiley, New York

    Google Scholar 

  • Jones MM, Tuomisto H, Clark DB, Olivas P (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. J Ecol 94:181–195

    Article  CAS  Google Scholar 

  • Kappelle M (2006) Structure and composition of Costa Rican montane oak forests. In: Kappelle M (ed) Ecology and conservation of neotropical montane oak Forests. Springer-Verlag, Berlin, pp 127–139

    Chapter  Google Scholar 

  • Kappelle M, Cleef AM, Chavarri A (1992) Phytogeography of Talamancan montane Quercus forests, Costa Rica. J Biogeogr 19:299–315

    Article  Google Scholar 

  • Kariuki M, Rolfe M, Smith RGB, Vanclay JK, Kooyman RM (2006) Diameter growth performance varies with species functional-group and habitat characteristics in subtropical rainforests. For Ecol Manag 225:1–14

    Article  Google Scholar 

  • Kelly CK, Bowler M, Pybus O, Harvey P (2008) Phylogeny, niches, and relative abundance in natural communities. Ecology 89:962–970

    Article  PubMed  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129

    Article  Google Scholar 

  • Lazcano SC (1978) Las cavernas de Cerro Grande, estados de Jalisco y Colima. Laboratorio Natural Las Joyas. Universidad de Guadalajara, Guadalajara, Jalisco

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Liebhold A, Koening WD, Bjornstad ON (2004) Spatial synchrony in population dynamics. Ann Rev Ecol Syst 35:467–490

    Article  Google Scholar 

  • Loehle C (2000) Strategy space and the disturbance spectrum: a life-history model for tree species coexistence. Am Nat 156:14–33

    Article  PubMed  Google Scholar 

  • Luna-Vega I, Alcántara-Ayala O, Ruíz-Jiménez CA, Contreras-Medina R (2006a) Composition and structure of humid montane oak forests at different sites in Central and Eastern Mexico. In: Kappelle M (ed) Ecology and conservation of neotropical montane Oak forests. Springer-Verlag, Berlin, pp 102–112

    Google Scholar 

  • Luna-Vega I, Alcántara Ayala O, Contreras Medina R, Ponce Vargas A (2006b) Biogeography, current knowledge and conservation of threatened vascular plants characteristic of Mexican temperate forests. Biodiversity Conserv 15:3773–3799

    Article  Google Scholar 

  • Marshall CJ, Liebherr JK (2000) Cladistic biogeography of the Mexican transition zone. J Biogeogr 27:203–216

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, version 4. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McNab WH (1993) A topographic index to quantify the effect of mesoscale landform on site productivity. Can J For Res 23:1100–1107

    Article  Google Scholar 

  • Meave JA, Rincón A, Romero-Romero MA (2006) Oak forests of the hyper-humid region of La Chinantla, Northern Oaxaca Range, Mexico. In: Kappelle M (ed) Ecology and conservation of neotropical montane oak forests. Springer-Verlag, Berlin, pp 113–125

    Chapter  Google Scholar 

  • Mohler CL (1990) Co-occurrence of oak subgenera: implications for niche differentiation. Bull Torrey Bot Club 117:247

    Article  Google Scholar 

  • Nakashizauka T (2001) Species coexistence in temperate, mixed deciduous forests. Trends Ecol Evol 16:205–210

    Article  Google Scholar 

  • Økland RH (1996) Are ordination and constrained ordination alternative or complementary strategies in general ecological studies? J Veg Sci 7:289–292

    Article  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, O’Hara RG, Simpson GL, Solymos P, Stevens H, Wagner H (2010) vegan: community ecology package. R package, version 1.18-2/r1135. http://R-Forge.R-project.org/projects/vegan/

  • Olvera-Vargas M (2006) Spatio-temporal dynamics of Neotropical high-altitude mixed-oak forest in Western Mexico. Doctoral Thesis, University of Oxford

  • Olvera-Vargas M, Moreno Gómez S, Figueroa-Rangel BL (1996) Sitios permanentes de investigación Silvícola: Manual para su establecimiento. Universidad de Guadalajara, Guadalajara

    Google Scholar 

  • Olvera-Vargas M, Figueroa-Rangel BL, Moreno Gómez S, Solís-Magallanes A (1998) Resultados preliminares de la fenología de cuatro especies de encino (Quercus) en Cerro Grande, Reserva de la Biosfera Sierra de Manantlán. Biotam 9:7–18

    Google Scholar 

  • Ozinga WA, Schaminée HJ, Bekker RM, Bonn S, Poschlod P, Tackenberg O, Bakker J, van Groenendal JM (2005) Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108:555–561

    Article  Google Scholar 

  • Padilla-Velarde E, Cuevas-Guzmán R, Ibarra-Manríquez G, Moreno Gómez S (2006) Ríqueza y biogeografía de la flora arbórea de Colima. Revista Mexicana de Biodiversidad 77

  • Park AD (2001) Environmental influences on post-harvest natural regeneration in Mexican pine-oak forests. For Ecol Manag 144:213–228

    Article  Google Scholar 

  • Park A (2003) Spatial segregation of pines and oaks under different fire regimes in the Sierra Madre Occidental. Plant Ecol 169:1–20

    Google Scholar 

  • Poorter L, Arets E (2003) Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecol 166:295–306

    Article  Google Scholar 

  • Ramírez-Marcial N, Ochoa-Gaona S, González-Espinoza M, Quintana-Ascencio PF (1998) Análisis florístico y sucesional en la Estación Biológica Cerro Huitepec, Chiapas, México. Acta Bot Mex 44:59–85

    Google Scholar 

  • Ramírez-Marcial N, Camacho-Cruz A, González-Espinoza M, López-Barrera F (2006) Establishment, survival and growth of tree seedlings under successional montane oak forests in Chiapas Mexico. In: Kappelle M (ed) Ecology and conservation of neotropical montane oak forests. Springer-Verlag, Berlin, pp 177–189

    Chapter  Google Scholar 

  • Rzedowski J (1978) La vegetación de México. Editorial Limusa, México City

    Google Scholar 

  • Sakai A, Ohsawa M (1993) Vegetation pattern and microtopography on a landslide scar of Mt Kiyosumi, central Japan. Ecol Res 8:47–56

    Article  Google Scholar 

  • Slik JWF, Poulsen AD, Ashton PS, Cannon CH, Eichhorn KAO, Kartawinata K, Lanniari I, Nagamasu H, Nakagawa M, van Nieuwstadt MGL, Payne J, Purwaningsih A, Sardan K, Sidiyasa K, Verburg RW, Webb CO, Wilkie P (2003) A floristic analysis of the lowland dipterocarp forests of Borneo. J Biogeogr 30:1517–1531

    Article  Google Scholar 

  • Svenning J-C (2001) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. J Ecol 87:55–65

    Article  Google Scholar 

  • Svenning J-C, Kinner DA, Stallard RF, Engelbrecht BMJ, Wright SJ (2004) Ecological determinism in plant community structure across a tropical forest landscape. Ecology 85:2526–2538

    Article  Google Scholar 

  • ter Braak CJF, Smilauer P (1998) CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination, version 4. Centre for Biometry Wageningen, CPRO-DLO, Wageningen

  • Tokeshi M (1999) Species coexistence: ecological and evolutionary perspectives. Blackwell Science, Oxford

    Google Scholar 

  • Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A (2003a) Floristic patterns along a 43-km long transect in an Amazonian rain forest. J Ecol 91:743–756

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003b) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244

    Article  CAS  PubMed  Google Scholar 

  • Valencia S (2004) Diversidad del género Quercus (Fagaceae) en México. Bol Soc Bot Mex 075:33–53

    Google Scholar 

  • Vázquez-García JA, Cuevas-Guzmán R, Cochrane TS, Iltis HH, Santana-Michel FJ, Guzmán-Hernández L (1995) Flora de Manantlán. Botanical Research Institute of Texas, Inc, Fort Worth

    Google Scholar 

  • Vormisto J, Svenning J-C, Hall P, Balslev H (2004) Diversity and dominance in palm (Arecaceae) communities in terra firme forests in the western Amazon basin. J Ecol 92:577–588

    Article  Google Scholar 

Download references

Acknowledgements

We are greatly indebted to Oscar Sánchez Jiménez, Jose María Michel Fuentes and Abel Ceja Gutiérrez for their valuable assistance during the fieldwork. To Saúl Moreno Gómez, for his great help during the early plot establishment. We thank Professor Frans Bongers, Shonil Bhagwat, Ramón Cuevas Guzmán and two anonymous reviewers for their valuable comments and suggestions on the manuscript. Ramón Cuevas Guzmán and Luis Guzmán Hernández identified botanical material. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and the Universidad de Guadalajara provided funds for the fieldwork. The senior author was supported by Conacyt (Mexican National Council for Science and Technology) and Promep (SEP) through a Doctorate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Olvera-Vargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olvera-Vargas, M., Figueroa-Rangel, B.L. & Vázquez-López, J.M. Is there environmental differentiation in the Quercus-dominated forests of west-central Mexico?. Plant Ecol 211, 321–335 (2010). https://doi.org/10.1007/s11258-010-9792-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9792-z

Keywords

Navigation