Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH, Rajjaelh DG (eds) Advances in ecological research. Academic Press, New York, NY
Google Scholar
Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612
CAS
Article
Google Scholar
Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, Upper Saddle River, New Jersey
Google Scholar
Brink RH, Dubah P, Lynch DL (1960) Measurement of carbohydrates in soil hydrolysates with anthrone. Soil Sci 89:157–166
CAS
Article
Google Scholar
Classen AT, Chapman SK, Whitham TG, Hart SC, Koch GW (2007) Genetic-based plant resistance and susceptibility traits to herbivory influence needle and root litter nutrient dynamics. J Ecol 95:1181–1194
CAS
Article
Google Scholar
DeLuca TH, Nilsson M-C, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214
Article
Google Scholar
DeLuca TH, Zackrisson O, Gundale MJ, Nilsson MC (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181
CAS
Article
PubMed
Google Scholar
Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115
Article
Google Scholar
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2009) Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol 98:362–373
Article
Google Scholar
Garnett E, Jonsson LM, Dighton J, Murnen K (2004) Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds. Biol Fertil Soils 40:421–426
Article
Google Scholar
Hagerman AE (1987) Radial diffusion method for determining tannin in plant-extracts. J Chem Ecol 13:437–449
CAS
Article
Google Scholar
Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243
Article
PubMed
Google Scholar
Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339
Article
Google Scholar
Joanisse GD, Bradley RL, Preston CM, Munson AD (2007) Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia. New Phytol 175:535–546
CAS
Article
PubMed
Google Scholar
Joanisse GD, Bradley RL, Preston CM (2008) Do late-successional tannin-rich plant communities occurring on highly acidic soils increase the DON/DIN ratio? Biol Fertil Soils 44:903–907
CAS
Article
Google Scholar
Joanisse GD, Bradley RL, Preston CM, Bending GD (2009) Sequestration of soil nitrogen as tannin-protein complexes may improve the competitive ability of sheep laurel (Kalmia angustifolia) relative to black spruce (Picea mariana). New Phytol 181:187–198
CAS
Article
PubMed
Google Scholar
Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66
CAS
Article
Google Scholar
Kraus TEC, Zasoski RJ, Dahlgren RA, Horwath WR, Preston CM (2004) Carbon and nitrogen dynamics in a forest soil amended with purified tannins from different plant species. Soil Biol Biochem 36:309–321
CAS
Article
Google Scholar
Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W, Aerts R (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97:886–900
CAS
Article
Google Scholar
Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Research Signpost, Trivandrum, India
Google Scholar
Madritch MD, Hunter MD (2002) Phenotypic diversity influences ecosystem functioning in an oak sandhills community. Ecology 83:2084–2090
Article
Google Scholar
Monk CD (1966) An ecological significance of evergreenness. Ecology 47:504–505
Google Scholar
Monk CD (1971) Leaf decomposition and loss of CA-45 from deciduous and evergreen trees. Am Midl Nat 86:379–384
Google Scholar
Northrup RR, Zengshou Y, Dahlgren RA, Vogt KA (1995) Polyphenol control of nitrogen release from pine litter. Nature 377:227–229
Article
Google Scholar
Northup RR, Dahlgren RA, Yu ZS (1995) Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient—a new interpretation. Plant Soil 171:255–262
CAS
Article
Google Scholar
Ordonez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149
Article
Google Scholar
Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230
CAS
Article
Google Scholar
Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734
CAS
Article
PubMed
Google Scholar
Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591–602
Article
Google Scholar
Schweitzer JA, Bailey JK, Rehill BJ, Martinsen GD, Hart SC, Lindroth RL, Keim P, Whitham TG (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7:127–134
Article
Google Scholar
Schweitzer JA, Madritch MD, Bailey JK, LeRoy CJ, Fischer DG, Rehill BJ, Lindroth RL, Hagerman AE, Wooley SC, Hart SC, Whitham TG (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020
CAS
Article
Google Scholar
Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Am J Enol Vitic 16:144–158
CAS
Google Scholar
Stevenson FJ, Cole MA (1999) Cycles of the soil. Wiley, New York, NY
Google Scholar
Tamm CO (1991) Nitrogen in terrestrial ecosystems. Springer-Verlag, Berlin
Google Scholar
Thomas WA, Grigal DF (1976) Phosphorous conservation by evergreenness of mountain laurel. Oikos 27:19–26
CAS
Article
Google Scholar
Wardle DA (1993) Changes in the microbial biomass and metabolic quotient during leaf litter succession in some New Zealand forest and scrubland ecosystems. Funct Ecol 7:346–355
Article
Google Scholar
Wardle DA, Zackrisson O (2005) Effects of species and functional group loss on island ecosystem properties. Nature 435:806–810
CAS
Article
PubMed
Google Scholar
Wardle DA, Zackrisson O, Hornberg G, Gallet C (1997) The influence of island area on ecosystem properties. Science 277:1296–1299
CAS
Article
Google Scholar
Wardle DA, Hornberg G, Zackrisson O, Kalela-Brundin M, Coomes DA (2003) Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300:972–975
CAS
Article
PubMed
Google Scholar
Wardle DA, Bardgett RD, Walker LR, Bonner KI (2009) Among- and within-species variation in plant litter decomposition in contrasting long-term chronosequences. Funct Ecol 23:442–453
Article
Google Scholar
Wurzburger N, Hendrick RL (2009) Plant litter chemistry and mycorrhizal roots promote a nitrogen feedback in a temperate forest. J Ecol 97:528–536
CAS
Article
Google Scholar
Zackrisson O, DeLuca TH, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334
Article
Google Scholar