Skip to main content
Log in

Leaf litterfall patterns of perennial plant species in the arid Patagonian Monte, Argentina

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the variation in leaf litterfall patterns of desert plant species in relation to the intra- and interannual variation of precipitation. We collected the leaf litterfall of 12 representative species of the dominant life forms in the arid Patagonian Monte (evergreen shrubs, deciduous shrubs, and perennial grasses) at monthly intervals during three consecutive years. All shrub species showed a marked seasonality in the pattern of leaf litterfall, but the date of the peak of leaf litterfall differed among them. The peak of leaf litterfall in three deciduous and three evergreen shrubs occurred in summer months while in one deciduous shrub and in two other evergreen shrubs the peak of leaf litterfall was in autumn and winter, respectively. In contrast, the leaf litterfall of perennial grasses occurred through the year without a seasonal pattern. In most shrub species, increasing annual precipitation was related to increasing leaf litterfall and the peak of leaf litterfall was positively related to precipitation events occurred some months before, during winter. Moreover, the magnitude of responses in terms of variation in leaf litterfall in relation to interannual variation of precipitation was not the same for all species. Evergreen shrubs showed lower responses than deciduous species. These differences in leaf litterfall patterns were consistent with differences in leaf traits. In conclusion, we found new evidence of species-specific responses of leaf litterfall patterns to precipitation, suggesting that other factors than precipitation may control leaf litterfall in desert plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R (1995) The advantages of being evergreen. Trends Ecol Evol 10:402–407. doi:10.1016/S0169-5347(00)89156-9

    Article  Google Scholar 

  • Aerts R, Chapin FS III (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Alvarez JA, Villagra PE, Rossi BE, Cesca EM (2009) Spatial and temporal litterfall heterogeneity generated by woody species in the Central Monte Desert. Plant Ecol 205:295–303. doi:10.1007/s11258-009-9618-z

    Article  Google Scholar 

  • Ares JO, Beeskow AM, Bertiller MB, Rostagno CM, Irisarri MP, Anchorena J, Defossé GE, Merino CA (1990) Structural and dynamic characteristics of overgrazed land of northern Patagonia, Argentina. In: Breymeyer A (ed) Managed grasslands. Elsevier, The Netherlands, pp 149–175

    Google Scholar 

  • Barros V, Rivero M (1982) Mapas de probabilidad de precipitación de la Provincia del Chubut. Monografía 54. Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina

  • Bertiller MB, Beeskow AM, Coronato FR (1991) Seasonal variation and plant phenology in arid Patagonian (Argentina). J Arid Environ 21:1–11

    Google Scholar 

  • Bisigato AJ, Bertiller MB (1997) Grazing effects on patchy dryland vegetation in northern Patagonia. J Arid Environ 36:639–653. doi:10.1006/jare.1996.0247

    Article  Google Scholar 

  • Bisigato AJ, López Laphitz RM (2009) Ecohydrological effects of grazing-induced degradation in the Patagonian Monte, Argentina. Aust Ecol 34:545–557. doi:10.1111/j.1442-9993.2009.01958.x

    Article  Google Scholar 

  • Bo Pedersen L, Bille-Hansen J (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. Forest Ecol Manag 114:55–70. doi:10.1016/S0378-1127(98)00381-8

    Article  Google Scholar 

  • Bray JR, Gorham E (1964) Litter production in forests of the world. Adv Ecol Res 2:101–157

    Article  Google Scholar 

  • Bussotti F, Borghini F, Celesti C, Leonzio C, Cozzi A, Bettini D, Ferretti M (2003) Leaf shedding, crow condition and element return in two mixed holm oak forests in Tuscany, central Italy. Forest Ecol Manag 176:273–285. doi:10.1016/S0378-1127(02)00283-9

    Article  Google Scholar 

  • Cabrera AL (1976) Las Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura, Jardinería y Horticultura. ACME, Argentina

  • Campanella MV (2009) Ecología de la senescencia foliar en plantas de ecosistemas áridos. Dissertation, Universidad Nacional del Comahue, Centro Regional Universitario Bariloche

  • Campanella MV, Bertiller MB (2008) Plant phenology, leaf traits, and leaf litterfall of contrasting life forms in the arid Patagonian Monte, Argentina. J Veg Sci 19:75–85. doi:10.3170/2007-8-18333

    Article  Google Scholar 

  • Campanella MV, Bertiller MB (2009) Leafing patterns and leaf traits of four evergreen shrubs in the Patagonian Monte, Argentina. Acta Oecol 35:831–837. doi:10.1016/j.actao.2009.08.007

    Article  Google Scholar 

  • Carrera AL, Vargas DN, Campanella MV, Bertiller MB, Sain CL, Mazzarino MJ (2005) Soil Nitrogen in relation to quality and decomposability of plant litter in the Patagonian Monte, Argentina. Plant Ecol 181:139–151. doi:10.1007/s11258-005-5322-9

    Article  Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259. doi:10.1146/annurev.es.13.110182.001305

    Article  Google Scholar 

  • Coley PD (1988) Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:531–536. doi:10.1007/BF00380050

    Article  Google Scholar 

  • Coronato FR, Bertiller MB (1997) Climatic controls of soil moisture dynamics in an arid steppe of Northern Patagonia, Argentina. Arid Soil Res Rehab 11:277–288

    Google Scholar 

  • De Bie S, Ketner P, Paase M, Geerling C (1998) Woody plant phenology in the West Africa savanna. J Biogeogr 25:883–900. doi:10.1046/j.1365-2699.1998.00229.x

    Article  Google Scholar 

  • Descheemaeker K, Muys B, Nyseen J, Poesen J, Raes D, Haile M, Deckers J (2006) Litter production and organic matter accumulation in exclosures of the Tigray highlands, Ethiopia. Forest Ecol Manag 233:21–35. doi:10.1016/j.foreco.2006.05.061

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32. doi:10.1007/BF02858763

    Article  Google Scholar 

  • Ghazanfar SA (1997) The phenology of desert plants: a 3 year study in a gravel desert wadi in northern Oman. J Arid Environ 35:407–417. doi:10.1006/jare.1996.0190

    Article  Google Scholar 

  • Grace J (1998) Plant water relations. In: Crawley MJ (ed) Plant ecology, 2nd edn. Blackwell Science, Oxford, pp 28–50

    Google Scholar 

  • Jobbágy EG, Sala OE (2000) Controls of grass and shrub aboveground production in the Patagonian steppe. Ecol Appl 10:541–549. doi:10.1890/1051-0761(2000)010

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons T (2000) Plant physiological ecology. Springer, New York

    Google Scholar 

  • Lauenroth WK, Sala OE (1992) Long-term forange production of North American shortgrass steppe. Ecol Appl 2:397–403. doi:10.2307/1941874

    Article  Google Scholar 

  • Martinez-Carretero E, Dalmasso AD (1992) Litter yield in shrubs of larrea in the andean piedmont of Mendoza, Argentina. Vegetatio 101:21–33. doi:10.1007/BF00031912

    Article  Google Scholar 

  • Martínez-Yrízar A, Núñez S, Miranda H, Búrquez A (1999) Temporal and spatial variation of litter production in Sonoran Desert communities. Plant Ecol 145:37–48. doi:10.1023/A:1009896201047

    Article  Google Scholar 

  • Maya Y, Arriaga L (1996) Littterfall and phenological patterns of the dominant overstorey species of a desert scrub community in north-western Mexico. J Arid Environ 34:23–35. doi:10.1006/jare.1996.0090

    Article  Google Scholar 

  • Mazzarino MJ, Bertiller MB, Sain C, Satti P, Coronato FR (1998) Soil nitrogen dynamics in northeastern Patagonia steppe under different precipitation regimes. Plant Soil 202:125–131. doi:10.1023/A:1004389011473

    Article  CAS  Google Scholar 

  • Milla R, Castro-Díez P, Maestro-Martínez M, Montserrat-Martí G (2005) Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytol 168:167–178. doi:10.1111/j.1469-8137.2005.01477.x

    Article  CAS  PubMed  Google Scholar 

  • Münster-Swendsen M (1984) The effect of precipitation on radial increment in Norway spruce (Picea abies Karst.) and on the dynamics of lepidopteran pest insects. J Appl Ecol 24:563–571. doi:10.1016/S0378-1127(98)00381-8

    Google Scholar 

  • Myers BA, Williams RJ, Fordyce I, Duff GA, Eamus D (1998) Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of northern Australia? Aust Ecol 23:329–339. doi:10.1111/j.1442-9993.1998.tb00738.x

    Article  Google Scholar 

  • Noy Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51. doi:10.1146/annurev.es.04.110173.000325

    Article  Google Scholar 

  • Núñez MN, Solman SA, Cabré MF (2009) Regional climate change experiments over southern South America. II: climate change scenarios in the late twenty-first century. Clim Dynam 32:1081–1095. doi:10.1007/s00382-008-0449-8

    Article  Google Scholar 

  • Ogaya R, Peñuelas J (2006) Contrasting foliar responses to rain exclusion in Quercus ilex and Phillyrea latifolia. Biol Plant 50:373–382. doi:10.1007/s10535-006-0052-y

    Article  Google Scholar 

  • Olivares SO, Squeo FA (1999) Patrones fenológicos en especies arbustivas del desierto costero del norte-centro de Chile. Rev Chil Hist Nat 72:353–370

    Google Scholar 

  • Orshan G (1954) Surface reduction and its significance as a hydroecological factor. J Ecol 42:442–444

    Article  Google Scholar 

  • Pavón NP, Briones O, Flores-Rivas J (2005) Litterfall production and nitrogen content in an intertropical semi-arid Mexican scrub. J Arid Environ 60:1–13. doi:10.1016/j.jaridenv.2004.03.004

    Article  Google Scholar 

  • Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–544. doi:10.1046/j.1365-2486.2002.00489.x

    Article  Google Scholar 

  • Sala OE, Parton WJ, Lauenroth WK, Joyce LA (1988) Primary production of central grassland region of the United States. Ecology 69:40–45. doi:10.2307/1943158

    Article  Google Scholar 

  • Seghieri J, Galle S (1999) Run-on contribution to a sahelian two-phase mosaic system: soil water regime and vegetation life cycle. Acta Oecol 20:209–218. doi:10.1017/S0266467402002584

    Article  Google Scholar 

  • Smith SD, Huxman TE, Zizter SF, Charlet TN, Housman DC, Coleman JS, Fenstermarker LK, Seeman JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82. doi:10.1038/35040544

    Article  CAS  PubMed  Google Scholar 

  • Soriano A (1956) Aspectos ecológicos y pasturiles de la vegetación Patagónica, relacionados con su estado y capacidad de recuperación. Revista Investigaciones Agropecuarias 10:349–372

    Google Scholar 

  • Stohlgren TJ (1995) Planning long-term vegetation studies at landscape scales. In: Powell TM, Steele JH (eds) Ecological time series. Chapman & Hall, London, pp 209–241

    Google Scholar 

  • Strojan CL, Turner FB, Castetter R (1979) Litterfall from shrubs in the northern Mojave Desert. Ecology 60:891–900. doi:10.2307/1936857

    Article  Google Scholar 

  • Vargas DN, Bertiller MB, Ares JO, Carrera AL, Sain CL (2006) Soil C and N dynamics induced by leaf-litter decomposition of shrubs and perennial grasses of the Patagonian Monte. Soil Biol Biochem 38:2401–2410. doi:10.1016/j.soilbio.2006.03.006

    Article  CAS  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298. doi:10.2307/1939481

    Article  CAS  Google Scholar 

  • Weatherly HE, Zitzer SF, Coleman JS, Arnone JA III (2003) In situ litter decomposition and litter quality in a Mojave Desert ecosystem: effects of elevated atmospheric CO2 and interannual climate variability. Glob Change Biol 9:1223–1233. doi:10.1046/j.1365-2486.2003.00653.x

    Article  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi:10.1146/annurev.ecolsys.33.010802.150452

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by PICT-02 08-11131 and PICT 08-20454 BID 1201/OC-AR -1728/OC-AR, National Agency for Scientific and Technological Promotion. MV Campanella fellowship was supported by FONCYT and CONICET (National Research Council of Argentina). Recognition is also given to Mr. Fermín Sarasa who allowed the access to the study area in Estancia “San Luis.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Victoria Campanella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanella, M.V., Bertiller, M.B. Leaf litterfall patterns of perennial plant species in the arid Patagonian Monte, Argentina. Plant Ecol 210, 43–52 (2010). https://doi.org/10.1007/s11258-010-9736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-010-9736-7

Keywords

Navigation