Advertisement

Plant Ecology

, Volume 205, Issue 2, pp 179–191 | Cite as

Effects of experimental warming and drought on biomass accumulation in a Mediterranean shrubland

  • Patricia Prieto
  • Josep Peñuelas
  • Joan Llusià
  • Dolores Asensio
  • Marc Estiarte
Article

Abstract

We studied the effects of experimental warming and drought on the plant biomass of a Mediterranean shrubland. We monitored growth at plant level and biomass accumulation at stand level. The experimentation period stretched over 7 years (1999–2005) and we focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree species Pinus halepensis L. The warming treatment increased shoot elongation in E. multiflora, and the drought treatment reduced shoot elongation in G. alypum. The elongation of P. halepensis remained unaffected under both treatments. The balance between the patterns observed in biomass accumulation for the three studied species in the drought plots (reduction in E. multiflora and P. halepensis and increase in G. alypum) resulted in a trend to reduce 33% the biomass of the drought treatment plots with respect to the untreated plots, which almost doubled their biomass from 1998 to 2005. The results also suggest that under drier conditions larger accumulation of dead biomass may occur at stand level, which combined with higher temperatures, may thus increase fire risk in the Mediterranean area.

Keywords

Biomass accumulation Drought Elongation Erica multiflora Global warming Globularia alypum Mediterranean shrubland Pinus halepensis 

Notes

Acknowledgements

We owe thanks to P. Bruna and G. Alessio for providing data and also to M. Ribera, B. González, V. Cruz, R. Marín, P. Mendoza, J. Muñoz, E. Quintanilla and N. Sanfeliu for their help in the collection of the data. We are especially grateful to J. Sardans for his valuable suggestions. This research was funded by the EU under the projects CLIMOOR (Contract ENV4-CT97-0694) and VULCAN (Contract EVK2-CT-2000-00094) and we also received additional financial help from the Spanish Government (grants CGL2006-04025/BOS and Consolider Montes CSD2008-00040), the Catalan Government (grant SGR2005-00312) and FP6 NEU NITROEUROPE (Contract GOCE017841).

References

  1. Beier C, Emmett B, Gundersen P et al (2004) Novel approaches to study climate change effects on terrestrial ecosystems in the field: drought and passive nighttime warming. Ecosystems (N Y, Print) 7:583–597. doi: 10.1007/s10021-004-0178-8 CrossRefGoogle Scholar
  2. Bellot J, Maestre FT, Chirino E, Hernández N, de Urbina JO (2003) Afforestation with Pinus halepensis reduces native shrub performance in a Mediterranean semiarid area. Acta Oecol 25:7–15. doi: 10.1016/j.actao.2003.10.001 CrossRefGoogle Scholar
  3. Bolòs O, Vigo J (1995) Flora dels Països Catalans. Barcino Editorial, BarcelonaGoogle Scholar
  4. Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260. doi: 10.1146/annurev.es.11.110180.001313 CrossRefGoogle Scholar
  5. Chapin FS III, Shaver GR (1985) Individualistic growth response of tundra plant species to environmental manipulations in the field. Ecology 66:564–576. doi: 10.2307/1940405 CrossRefGoogle Scholar
  6. Chapin FS III, Shaver GR (1996) Physiological and growth responses of arctic to a field experiment simulating climatic change. Ecology 77:822–840. doi: 10.2307/2265504 CrossRefGoogle Scholar
  7. Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi: 10.1038/nature03972 CrossRefPubMedGoogle Scholar
  8. De Luís M, García-Cano MF, Cortina J, Raventós J, González-Hidalgo JC, Sánchez JR (2001) Climatic trends, disturbances and short-term vegetation dynamics in a Mediterranean shrubland. For Ecol Manag 147:25–37. doi: 10.1016/S0378-1127(00)00438-2 CrossRefGoogle Scholar
  9. Farnsworth EJ, Nuñez-Farfán J, Careaga SA, Bazzaz FA (1995) Phenology and growth of three temperate forest life forms in response to artificial soil warming. J Ecol 83:967–977. doi: 10.2307/2261178 CrossRefGoogle Scholar
  10. Filella I, Llusià J, Piñol J, Peñuelas J (1998) Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions. Environ Exp Bot 39:213–220. doi: 10.1016/S0098-8472(97)00045-2 CrossRefGoogle Scholar
  11. Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community: results of a climate-warming experiment. Science 267:876–880. doi: 10.1126/science.267.5199.876 CrossRefPubMedGoogle Scholar
  12. Hollister RD, Webber PJ, Tweedie CE (2005) The response of Alaskan arctic tundra to experimental warming: differences between short- and long-term responses. Glob Change Biol 11:525–536. doi: 10.1111/j.1365-2486.2005.00926.x CrossRefGoogle Scholar
  13. Huntingford C, Cox PM, Lenton TM (2000) Contrasting responses of a simple terrestrial ecosystem model to global change. Ecol Model 134:41–58. doi: 10.1016/S0304-3800(00)00330-6 CrossRefGoogle Scholar
  14. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  15. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75. doi: 10.1007/s004840000066 CrossRefPubMedGoogle Scholar
  16. Kudo G, Suzuki S (2003) Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan. Oecologia 135:280–287PubMedGoogle Scholar
  17. Kyparissis A, Grammatikopoulos G, Manetas Y (1997) Leaf demography and photosynthesis as affected by the environment in the drought semi-deciduous Mediterranean shrub Phlomis fruticosa L. Acta Oecol 18:543–555. doi: 10.1016/S1146-609X(97)80040-9 CrossRefGoogle Scholar
  18. Larcher W (2000) Temperature stress and survival ability of Mediterranean sclrophyllous plants. Plant Biosyst 134:279–295. doi: 10.1080/11263500012331350455 CrossRefGoogle Scholar
  19. Le Houérou HN (1996) Climate change, drought and desertification. J Arid Environ 34:133–185. doi: 10.1006/jare.1996.0099 CrossRefGoogle Scholar
  20. Llorens L, Peñuelas J (2005) Experimental evidence of future drier and warmer conditions affecting flowering of two co-occurring Mediterranean shrubs. Int J Plant Sci 166:235–245. doi: 10.1086/427480 CrossRefGoogle Scholar
  21. Llorens L, Peñuelas J, Filella I (2003a) Diurnal and seasonal variations in the photosynthetic performance and water relation of two co-occurring Mediterranean shrubs, Erica multiflora and Globularia alypum. Physiol Plant 118:1–12. doi: 10.1034/j.1399-3054.2003.00101.x CrossRefGoogle Scholar
  22. Llorens L, Peñuelas J, Estiarte M (2003b) Ecophysiological responses of two Mediterranean shrubs, Erica multiflora and Globularia alypum, to experimentally drier and warmer conditions. Physiol Plant 119:231–243. doi: 10.1034/j.1399-3054.2003.00174.x CrossRefGoogle Scholar
  23. Llorens L, Peñuelas J, Estiarte M, Bruna P (2004) Contrasting growth changes in two dominant species of a Mediterranean shrubland submitted to experimental drought and warming. Ann Bot 94:843–853. doi: 10.1093/aob/mch211 CrossRefPubMedGoogle Scholar
  24. Llusià J, Peñuelas J (2000) Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions. Am J Bot 87:133–140. doi: 10.2307/2656691 CrossRefPubMedGoogle Scholar
  25. Long SP (1991) Modification of the response of photosynthetic productivity to rinsing temperature by atmospheric CO2 concentration: has its importance been underestimated? Plant Cell Environ 14:729–739. doi: 10.1111/j.1365-3040.1991.tb01439.x CrossRefGoogle Scholar
  26. Mitrakos KA (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252Google Scholar
  27. Mutke S, Gordo J, Climent J, Gil L (2003) Shoot growth and phenology modelling of grafted Stone pine (Pinus pinea L.) in Inner Spain. For Sci 60:527–537Google Scholar
  28. Ogaya R, Peñuelas J (2003a) Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest. Flora 198:132–141. doi: 10.1078/0367-2530-00085 Google Scholar
  29. Ogaya R, Peñuelas J (2003b) Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ Exp Bot 50:137–148. doi: 10.1016/S0098-8472(03)00019-4 CrossRefGoogle Scholar
  30. Ogaya R, Peñuelas J (2007) Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures. Acta Oecol 31:168–173. doi: 10.1016/j.actao.2006.07.004 CrossRefGoogle Scholar
  31. Oliveira G, Peñuelas J (2000) Comparative photochemical and phenomorphological responses to winter stress of an evergreen (Quercus ilex) and a semi-deciduous (Cistus albidus) Mediterranean woody species. Acta Oecol 21:97–107. doi: 10.1016/S1146-609X(00)00121-1 CrossRefGoogle Scholar
  32. Oliveira G, Peñuelas J (2001) Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen Mediterranean woody species during winter. Aust J Plant Physiol 28:471–480Google Scholar
  33. Oliveira G, Peñuelas J (2004) The effect of winter cold stress on photosynthesis and photochemical efficiency of PSII of two Mediterranean woody species—Cistus albidus and Quercus ilex. Plant Ecol 175:179–191. doi: 10.1007/s11258-005-4876-x CrossRefGoogle Scholar
  34. Parsons AN, Welker JM, Wookey PA, Press MC, Cllaghan TV, Lee JA (1994) Growth responses of four sub-Arctic dwarf shrubs to simulated environmental change. J Ecol 82:307–318. doi: 10.2307/2261298 CrossRefGoogle Scholar
  35. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140. doi: 10.1046/j.1365-2486.2003.00566.x CrossRefGoogle Scholar
  36. Peñuelas J, Llusià J (2002) Linking photorespiration, terpenes and thermotolerance. New Phytol 155:227–237. doi: 10.1046/j.1469-8137.2002.00457.x CrossRefGoogle Scholar
  37. Peñuelas J, Filella I, Llusià J, Siscart D, Piñol J (1998) Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia. J Exp Bot 49:229–238. doi: 10.1093/jexbot/49.319.229 CrossRefGoogle Scholar
  38. Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952–2000 in the Mediterranean region. Glob Change Biol 8:531–544. doi: 10.1046/j.1365-2486.2002.00489.x CrossRefGoogle Scholar
  39. Peñuelas J, Filella I, Zhang X et al (2004a) Complex spatio-temporal phenological shifts in as a response to rainfall changes. New Phytol 161:837–846. doi: 10.1111/j.1469-8137.2004.01003.x CrossRefGoogle Scholar
  40. Peñuelas J, Gordon C, Llorens L et al (2004b) Non-intrusive field experiments show different plant responses to warming and drought among sites, seasons and species in a North-South European gradient. Ecosystems (N Y, Print) 7:598–612. doi: 10.1007/s10021-004-0179-7 CrossRefGoogle Scholar
  41. Peñuelas J, Filella I, Sabaté S, Gracia C (2005) Natural systems: terrestrial ecosystems. In: Llebot JE (ed) Climate change report in Catalonia. Institut d’Estudis Catalans, Barcelona, pp 517–553Google Scholar
  42. Peñuelas J, Prieto P, Beier C et al (2007) Response of plant species richness and primary productivity in shrublands along a north–south gradient in Europe to seven years of experimental warming and drought. Reductions in primary productivity in the heat and drought year of 2003. Glob Change Biol 13:2563–2581. doi: 10.1111/j.1365-2486.2007.01464.x CrossRefGoogle Scholar
  43. Piñol J, Terradas J, Lloret F (1998) Climate warming, wildfire hazard, and wildfire occurrence in coastal eastern Spain. Clim Change 38:345–357. doi: 10.1023/A:1005316632105 CrossRefGoogle Scholar
  44. Prieto P (2007) Phenology, biomass and community composition changes in a Mediterranean shrubland submitted to experimental warming and drought. PhD thesis, Universitat Autònoma de Barcelona, Barcelona, 238 ppGoogle Scholar
  45. Sardans J, Peñuelas J (2005) Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol Biochem 37:455–461. doi: 10.1016/j.soilbio.2004.08.004 CrossRefGoogle Scholar
  46. Sardans J, Peñuelas J, Estiarte M (2006) Warming and drought alter soil phosphatase activity and soil P availability in a Mediterranean shrubland. Plant Soil 289:227–238. doi: 10.1007/s11104-006-9131-2 CrossRefGoogle Scholar
  47. Sardans J, Peñuelas J, Estiarte M (2007) Seasonal patterns of root-surface phosphatase activities in a Mediterranean shrubland. Responses to experimental warming and drought. Biol Fertil Soils 43:779–786. doi: 10.1007/s00374-007-0166-1 CrossRefGoogle Scholar
  48. Tenhunen JD, Serra AS, Harley PC, Dougherty RL, Reynolds JF (1990) Factors influencing carbon fixation and water-use by Mediterranean sclerophyll shrubs during summer drought. Oecologia 82:381–393. doi: 10.1007/BF00317487 CrossRefGoogle Scholar
  49. Terradas J (1996) Ecología del foc (in Catalan). Proa Editorial, BarcelonaGoogle Scholar
  50. Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38. doi: 10.1146/annurev.pp.40.060189.000315 CrossRefGoogle Scholar
  51. Weltzin JF, Pastor J, Harth C, Bridgham SD, Updegraff K, Chapin CT (2000) Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81:3464–3478CrossRefGoogle Scholar
  52. Yordanov I, Velikova V, Tsonev T (2000) Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38:171–186. doi: 10.1023/A:1007201411474 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Patricia Prieto
    • 1
  • Josep Peñuelas
    • 1
  • Joan Llusià
    • 1
  • Dolores Asensio
    • 1
  • Marc Estiarte
    • 1
  1. 1.Ecophysiology and Global Change Unit CREAF-CEAB-CSIC, Centre for Ecological Research and Forestry Applications, Edifici CUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations