Skip to main content
Log in

Clustering of plant life strategies on meso-scale

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The spatial pattern of life strategies gives us clues about what factors are important for structuring the vegetation and at which scale they work. In this study, we look at the spatial distribution of the CSR-strategies of Grime on a meso-scale (larger than 50 m × 50 m) in a temperate forest. To detect the spatial pattern of the different life forms, 79 plant species were surveyed according to a grid with 2431 cells of 50 m × 50 m. For each cell C, S and R-values were calculated and their spatial distribution was studied. The spatial patterns were then explained by available environmental factors. The different plant strategies clearly showed an aggregated pattern on a scale larger than 50 m × 50 m. This non-random and unequal distribution of the different life strategies could be explained by the factors that are under the control of the forest management, namely “distance to road” and “dominant (planted) tree species”. Patches with high C-values (C-biotopes) where found under pine, S-biotopes where found under mixed oak-beech and pure beech stands of 100 to 150 years old. R-biotopes were bound to the roads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Augusto L, Ranger J, Binkley D et al (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 5:233–253. doi:10.1051/forest:2002020

    Article  Google Scholar 

  • Augusto L, Dupouey J-L, Ranger J (2003) Effect of tree species on understory vegetation and environmental conditions in temperate forests. Ann For Sci 60:823–831. doi:10.1051/forest:2003077

    Article  Google Scholar 

  • Beyer L, Blume H-P, Irmler U (1991) The humus of a Parabruanerde (Orthic-Luvisol) under Fagus sylvatica L. and Quercus robur L. and its modification in 25 years. Ann Sci For 48:267–278. doi:10.1051/forest:19910303

    Article  Google Scholar 

  • Binkley D (1995) The Influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS (eds) Proceedings of the tree and soil workshop. Lincoln University Press, Canterbury, pp 1–33

    Google Scholar 

  • Boeringa M (2003) Kriging Interpolator 3.2 for ArcView Spatial Analyst, Nieuwland

  • Dale MRT (1999) Spatial pattern analysis in plant ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Diekmann M, Dupré C (1997) Acidification and eutrophication of deciduous forests in northwestern Germany demonstrated by indicator species analysis. J Veg Sci 8:855–864. doi:10.2307/3237030

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Dulière JF, Carnol M, Dalem S et al (1999) Impact of dolomite lime on the ground vegetation and on potential net N transformations in Norway spruce (Picea abies (L.) Karst.) and sessile oak (Quercus petraea (Matt.) Lieb.) stands in the Belgian Ardenne. Ann For Sci 56:361–370. doi:10.1051/forest:19990501

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobot 18:1–248

    Google Scholar 

  • ESRI (1996a) ArcView GIS. Environmental System. Research Institute, Redlands, CA

  • ESRI (1996b) ArcView Spatial Analyst. Research Institute, Redlands, CA

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. doi:10.1890/03-0799

    Article  Google Scholar 

  • Godefroid S, Koedam N (2004) The impact of forest paths upon adjacent vegetation: effects of the path surfacing material on the species composition and soil compaction. Biol Conserv 199:405–419. doi:10.1016/j.biocon.2004.01.003

    Article  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31. doi:10.1038/250026a0

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology, a functional approach to common British species. Unwin Hyman, London

    Google Scholar 

  • Hagen-Thorn A, Callesen I, Armolaitis K et al (2004) The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. For Ecol Manage 195:373–384. doi:10.1016/j.foreco.2004.02.036

    Article  Google Scholar 

  • Hellström K, Huhta A-P, Rautio P et al (2003) Use of sheep grazing in the restoration of semi-natural meadows in northern Finland. Appl Veg Sci 6:45–52. doi:10.1658/1402-2001(2003)006[0045:UOSGIT]2.0.CO;2

    Article  Google Scholar 

  • Herbauts J, El Bayad J, Gruber W (1996) Influence of logging traffic on the hydromorphic degradation of acid forest soils developed on loessic loam in middle Belgium. For Ecol Manage 87:193–207. doi:10.1016/S0378-1127(96)03826-1

    Article  Google Scholar 

  • Hill MO, Mountford J, Roy D et al (1999) Ellenberg’s indicator values for the British plants. Ecofact vol 2, Technical Annex. Institute of Terrestrial Ecology, Huntigdon

  • Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39:708–720. doi:10.1046/j.1365-2664.2002.00746.x

    Article  Google Scholar 

  • Hodgson JG, Wilson PJ, Hunt R et al (1999) Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos 85:282–294. doi:10.2307/3546494

    Article  Google Scholar 

  • Honnay O, Degroote B, Hermy M (1998) Ancient-forest plant species in Western Belgium: a species list and possible ecological mechanisms. Belg J Bot 130:139–154

    Google Scholar 

  • Kleyer M (2002) Validation of plant functional types across two contrasting landscapes. J Veg Sci 13:167–178. doi:10.1658/1100-9233(2002)013[0167:VOPFTA]2.0.CO;2

    Article  Google Scholar 

  • Lambinon J, De Langhe JE, Delvosalle L et al (1998) Flora van België, het Groothertogdom Luxemburg, Noord-Frankrijk en de aangrenzende gebeden. Nationale Plantentuin van België, Meise

    Google Scholar 

  • Langohr R, Cyckens G (1986) Het Zoniënwoud, een unicum voor de aardwetenschappen. In: Zoniënwoud Kwijnen of overleven. Dry Borren Raad, Brussels

    Google Scholar 

  • Lavorel S, McIntyre S, Landsberg J et al (1997) Plant functional classifications from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12:474–478. doi:10.1016/S0169-5347(97)01219-6

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, Second English edn. Elsevier Science, Amsterdam

  • Lieth H, Berlekamp J, Fuest S et al (1999) Climate diagram World atlas. CD-series: climate and biosphere. Backuys Publishers, Leiden

  • Mackney D (1961) A podzol development sequence in oakwoods and heath in Central England. J Soil Sci 12:23–39. doi:10.1111/j.1365-2389.1961.tb00893.x

    Article  CAS  Google Scholar 

  • McCune B, Mefford MJ (1997) PC-ORD, Multivariate analysis of ecological data, Version 3.0. MjM Software Design, Gleneden Beach

  • Mustard MJ, Standing DB, Aitkenhead MJ, Robinson D, McDonald AJS (2003) The emergence of primary strategies in evolving virtual-plant populations. Evol Ecol Res 5:1067–1081

    Google Scholar 

  • Norden U (1994) Influence of broad-leaved tree species on pH and organic-matter content of forest topsoils in Scania, south Sweden. Scand J For Res 9:1–8. doi:10.1080/02827589409382806

    Article  Google Scholar 

  • Peterken G (1974) A method for assessing woodland flora for conservation using indicator species. Biol Conserv 6:239–245. doi:10.1016/0006-3207(74)90001-9

    Article  Google Scholar 

  • Ramenskii LG (1938) Introduction to the geobotanical study of complex vegetations. Selkhozgiz, Moscow

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W.H. Freeman & Company, New York

  • Statsoft Inc. (2005) STATISTICA (data analysis software system) version 7.1. Statsoft Inc, Tulsa

  • Tchoukanski I (2002) EditTools 3.6 for ArcView 3.1

  • ter Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination Software, Version 4.5. Microcomputer Power, Ithaca

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30. doi:10.1046/j.1523-1739.2000.99084.x

    Article  Google Scholar 

  • Van de Velde J (1991) Ontwerp beheersplan 1992 van het Zoniënbos. Dienst Waters en Bossen, Houtvesterij Groenendaal

    Google Scholar 

  • van der Maarel E (1993) Relations between sociological-ecological species groups and Ellenberg indicator values. Phytocoenologia 23:343–362

    Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. doi:10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Watkins RZ, Chen J, Pickens J et al (2003) Effects of forest roads on understory plants in a managed hardwood landscape. Conserv Biol 17:411–419. doi:10.1046/j.1523-1739.2003.01285.x

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the institute for nature and forest research (INBO) and the agency for nature and forest (ANB) for providing the digital soil and stand map and allowing access to the study area. We also thank two anonymous referees for their helpful comments on previous versions of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Massant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massant, W., Godefroid, S. & Koedam, N. Clustering of plant life strategies on meso-scale. Plant Ecol 205, 47–56 (2009). https://doi.org/10.1007/s11258-009-9597-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9597-0

Keywords

Navigation