Plant Ecology

, Volume 205, Issue 1, pp 1–11 | Cite as

Costs of reproduction in circumpolar Parnassia palustris L. in light of global warming

  • Sylvi M. Sandvik
  • Wenche Eide


Life-history theories predict competition and compromises between different reproductive and somatic (e.g., growth) functions in plants. This study concerns the costs of reproduction in an alpine herb, Parnassia palustris L., in light of global warming. The field experiments involved manipulations of temperature regime using open top chambers, and manipulations of the current level of reproductive investment by supplemental hand-pollination (SP) and bud removal (BR). The study continued for 2 years and costs of reproduction were evaluated in the second year by comparing reproductive outputs and growth between treatment groups. Flower manipulations carried out the first year had no statistically significant effect on reproductive or somatic variables in the second year, which suggests that reproductive costs in P. palustris are limited. Increased temperature, however, had a positive effect on a range of reproductive traits such as seed number, seed mass per fruit, mass per seed, and ratios between reproductive outputs and growth, but had no statistically significant influence on growth. No statistically significant interaction effects between flower manipulation and warming were revealed, which implies that the effects of flower manipulation in the first year does not differ statistically significantly between the two temperature regimes in the next year. We conclude that the lack of reproductive costs found in P. palustris at Finse expresses that resources are not restricted under a level that will induce high costs of reproduction. Furthermore, higher temperatures do not affect the costs, and finally, it appears that the reproductive costs are fine-tune controlled, which implies optimizing rather than maximizing of reproductive and somatic outputs.


Alpine Bud removal Climate change Experimental warming Supplemental pollination Trade-off 



We thank the University of Agder (SMS), the University of Bergen, and the O. G. Olsen legacy (WE) for financial support, Tore Engebretsen for field assistance, an anonymous referee for improving the manuscript, and the Alpine Research Centre at Finse for living facilities and hospitality during fieldwork.


  1. Ågren J, Willson MF (1994) Cost of seed production in the perennial herbs Geranium maculatum and G. sylvaticum: an experimental field study. Oikos 70:35–42. doi: 10.2307/3545696 CrossRefGoogle Scholar
  2. Alatalo JM, Totland Ø (1997) Response to simulated climatic change in an alpine and subarctic pollen-risk strategist, Silene acaulis. Glob Change Biol 3(suppl. 1):74–79. doi: 10.1111/j.1365-2486.1997.gcb133.x CrossRefGoogle Scholar
  3. Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511Google Scholar
  4. Aune B (1993a) Air Temperature Normals, normal period 1961–1990. The Norwegian Meteorological Institute, OsloGoogle Scholar
  5. Aune B (1993b) Precipitation Normals, normal period 1961–1990. The Norwegian Meteorological Institute, OsloGoogle Scholar
  6. Bell G (1980) The cost of reproduction and their consequences. Am Nat 116:45–76. doi: 10.1086/283611 CrossRefGoogle Scholar
  7. Biere A (1995) Genotypic and plastic variation in plant size – effects on fecundity and allocation patterns in Lychnis-Flos-Cuculi along a gradient of natural soil fertility. J Ecol 83:629–642. doi: 10.2307/2261631 CrossRefGoogle Scholar
  8. Calvo RN (1990) Four-year growth and reproduction of Cyclopogon cranichoides (Orchidaceae) in South Florida. Am J Bot 77:736–741. doi: 10.2307/2444365 CrossRefGoogle Scholar
  9. Carlsson BA, Callaghan TV (1994) Impact of climate factors on the clonal sedge Carex bigelowii: implications for population growth and vegetative spread. Ecography 17:321–330. doi: 10.1111/j.1600-0587.1994.tb00109.x CrossRefGoogle Scholar
  10. Cunnell GJ (1959) The arrangement of sepals and petals in Parnassia palustris L. Ann Bot (Lond) 23:441–453Google Scholar
  11. Drude O (1875) Über die blütengestaltung und die verwandtschaftsverhältnisse des genus Parnassia, nebst einer systematischen revision seiner arten. Linnaea 39:239–324Google Scholar
  12. Eggert A (1992) Dry matter economy and reproduction of a temperate forest spring geophyte, Allium ursinum. Ecography 15:45–55. doi: 10.1111/j.1600-0587.1992.tb00007.x CrossRefGoogle Scholar
  13. Eichinger A (1908) Beitrag zur kenntnis und systematischen stellung der gattung Parnassia. Beih Bot Centralbl 23:229–317Google Scholar
  14. Eichler AW (1875) Blütendiagramme II Verl. Von Wilhelm Engelmann, LeipzigGoogle Scholar
  15. Fox J, Stevens GC (1991) Cost of reproduction in a willow: experimental responses vs. natural variation. Ecology 72:1013–1023. doi: 10.2307/1940601 CrossRefGoogle Scholar
  16. Galen C, Stanton ML (1991) Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculaceae). Am J Bot 78:978–988. doi: 10.2307/2445177 CrossRefGoogle Scholar
  17. Grime PJ (1979) Plant strategies and vegetation processes. Wiley, ChichesterGoogle Scholar
  18. Harper JL (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  19. Havström M, Callaghan TV, Jonasson S (1993) Differential growth-responses of Cassiope-Tetragona, an Arctic Dwarf-Shrub, to environmental perturbations among 3 contrasting high sites and sub-Arctic sites. Oikos 66:389–402. doi: 10.2307/3544933 CrossRefGoogle Scholar
  20. Hemborg AM (1998) Reproductive allocation and cost of reproduction in subarctic herbs. A resource based perspective. Uppsala University, UppsalaGoogle Scholar
  21. Hemborg AM, Karlsson PS (1998) Altitudinal variation in size effects on plant reproductive effort and somatic costs of reproduction. Ecoscience 5:517–525Google Scholar
  22. Heß D (1983) Die Blüte. Einfühtrung in stuktur und funktion, ökologie und evolution der blüten. Ulmer, StuttgartGoogle Scholar
  23. Horvitz CC, Schemske DW (1988) Demographic cost of reproduction in a neotropical herb – an experimental field-study. Ecology 69:1741–1745. doi: 10.2307/1941152 CrossRefGoogle Scholar
  24. Hultgård UM (1987) Parnassia palustris L. in Scandinavia. Symb Bot Ups 28:1–128Google Scholar
  25. Jennersten O (1991) Cost of reproduction in Viscaria vulgaris (Caryophyllaceae): a field experiment. Oikos 61:197–204. doi: 10.2307/3545337 CrossRefGoogle Scholar
  26. Jönsson KI, Tuomi J (1994) Costs of reproduction in a historical-perspective. Trends Ecol Evol 9:304–307. doi: 10.1016/0169-5347(94)90042-6 CrossRefGoogle Scholar
  27. Karlsson PS, Svensson BM, Carlsson BÅ, Nordell KO (1990) Resource investment in reproduction and its consequences in three Pinguicula species. Oikos 59:393–398. doi: 10.2307/3545151 CrossRefGoogle Scholar
  28. Kozlowski J (1991) Optimal energy allocation models – an alternative to the concepts of reproductive effort and cost of reproduction. Acta Oecol 12:11–33Google Scholar
  29. Kullenberg B (1953) Några iakttagelser över insektbesöken på blomman av Parnassia palustris L. Sven Bot Tidskr 47:439–448Google Scholar
  30. Lid J, Lid DT (1998) Norsk Flora. Det norske samlagetGoogle Scholar
  31. Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Levesque E, Molau U, Molgaard P, Parsons AN, Svoboda J, Virginia RA (1997) Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob Change Biol 3:20–32. doi: 10.1111/j.1365-2486.1997.gcb136.x CrossRefGoogle Scholar
  32. Martens P (1936) Pollination et biologie florale chez Parnassia palustris L. Bull Soc R Bot Belg 68:183–231Google Scholar
  33. Meusel H, Jäger E, Weinert W (1965) Vergleichende Chorologie der Zentraleuropäischen Flora. Gustav Fischer Verlag, JenaGoogle Scholar
  34. Molau U (1997) Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Glob Change Biol 3(suppl. 1):97–107. doi: 10.1111/j.1365-2486.1997.gcb138.x CrossRefGoogle Scholar
  35. Molau U, Shaver GR (1997) Controls on seed production and seed germinability in Eriophorum vaginatum. Glob Change Biol 3(suppl. 1):80–88. doi: 10.1111/j.1365-2486.1997.gcb138.x Google Scholar
  36. Mölgaard P, Christensen K (1997) Response to experimental warming in a population of Papaver radicatum, in Greenland. Glob Change Biol 3(suppl. 1):116–124. doi: 10.1111/j.1365-2486.1997.gcb140.x CrossRefGoogle Scholar
  37. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348. doi: 10.1046/j.1469-8137.2002.00477.x CrossRefGoogle Scholar
  38. Parsons AN, Welker JM, Wookey PA, Press MC, Callaghan TV, Lee JA (1994) Growth responses of four sub-Arctic dwarf shrubs to simulated environmental change. J Ecol 74:307–318. doi: 10.2307/2261298 Google Scholar
  39. Partridge L (1992) Measuring reproductive costs. Trends Ecol Evol 7:99. doi: 10.1016/0169-5347(92)90250-F CrossRefGoogle Scholar
  40. Partridge L, Harvey PH (1988) Costs of reproduction. Nature 316:20–21. doi: 10.1038/316020a0 CrossRefGoogle Scholar
  41. Partridge L, Sibly R (1991) Constraints in the evolution of life histories. Philos Trans R Soc Lond Ser B Biol Sci 332:3–13CrossRefGoogle Scholar
  42. Primack RB, Hall P (1990) Costs of reproduction in the pink ladys-slipper orchid – a 4-year experimental-study. Am Nat 136:638–656. doi: 10.1086/285120 CrossRefGoogle Scholar
  43. Primack RB, Miao SL, Becker KR (1994) Costs of reproduction in the pink lady’s slipper orchid (Cypripedium acaule) – defoliation, increased fruit production, and fire. Am J Bot 81:1083–1090. doi: 10.2307/2445469 CrossRefGoogle Scholar
  44. Proctor M, Yeo PF (1973) The pollination of flowers. Collins, LondonGoogle Scholar
  45. Reekie EG, Bazzaz FA (1987a) Reproductive effort in plants. 1. Carbon allocation to reproduction. Am Nat 129:876–896. doi: 10.1086/284681 CrossRefGoogle Scholar
  46. Reekie EG, Bazzaz FA (1987b) Reproductive effort in plants. 3. Effect of reproduction on vegetative activity. Am Nat 129:907–919. doi: 10.1086/284683 CrossRefGoogle Scholar
  47. Reznick D (1985) Costs of reproduction – an evaluation of the empirical-evidence. Oikos 44:257–267. doi: 10.2307/3544698 CrossRefGoogle Scholar
  48. Reznick D (1992) Measuring the costs of reproduction. Trends Ecol Evol 7:42–45. doi: 10.1016/0169-5347(92)90150-A CrossRefGoogle Scholar
  49. Reznick D, Perry E, Travis J (1986) Measuring the cost of reproduction – a comment. Evolution 40:1338–1344. doi: 10.2307/2408959 CrossRefGoogle Scholar
  50. Samson DA, Werk KS (1986) Size-dependent effects in the analysis of reproductive effort in plants. Am Nat 127:667–680. doi: 10.1086/284512 CrossRefGoogle Scholar
  51. Sandvik SM (2001) Somatic and demographic costs under different temperature regimes in the late-flowering alpine perennial herb Saxifraga stellaris (Saxifragaceae). Oikos 93:303–311. doi: 10.1034/j.1600-0706.2001.930213.x CrossRefGoogle Scholar
  52. Sandvik SM, Totland O (2000) Short-term effects of simulated environmental changes on phenology, reproduction, and growth in the late-flowering snowbed herb Saxifraga stellaris L. Ecoscience 7:201–213Google Scholar
  53. Sandvik SM, Totland O (2003) Quantitative importance of staminodes for female reproductive success in Parnassia palustris under contrasting environmental conditions. Can J Bot 81:49–56. doi: 10.1139/b03-006 CrossRefGoogle Scholar
  54. Schaffer WM (1974) Optimal reproductive effort in fluctuating environments. Am Nat 108:783–790. doi: 10.1086/282954 CrossRefGoogle Scholar
  55. Semikhatova OA, Gerashimenko TV, Ivanova TI (1992) Photosynthesis, respiration, and growth of plants in the Soviet Arctic. In: Chapin FSIII, Jefferies RL, Reynolds JF, Et a (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, New York, pp 169–192Google Scholar
  56. Stearns SC (1976) Life-history tactics – review of ideas. Q Rev Biol 51:3–47. doi: 10.1086/409052 PubMedCrossRefGoogle Scholar
  57. Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268. doi: 10.2307/2389364 CrossRefGoogle Scholar
  58. Stephenson AG (1981) Flower and fruit abortion – proximate causes and ultimate functions. Annu Rev Ecol Syst 12:253–279. doi: 10.1146/ CrossRefGoogle Scholar
  59. Syrjänen K, Lehtilä K (1993) The cost of reproduction in Primula veris: differences between two adjacent populations. Oikos 67:465–472. doi: 10.2307/3545358 CrossRefGoogle Scholar
  60. Thorén LM, Karlsson PS, Tuomi J (1996) Somatic cost of reproduction in three carnivorous Pinguicula species. Oikos 76:427–434. doi: 10.2307/3546336 CrossRefGoogle Scholar
  61. Tuomi J, Hakala T, Haukioja E (1983) Alternative concepts of reproductive effort, costs of reproduction, and selection in life-history evolution. Am Zool 23:25–34Google Scholar
  62. Van Noordwijk A, de Jong G (1986) Acquisition and allocation of resources: their influences on variation in life history tactics. Am Nat 128:137–142. doi: 10.1086/284547 CrossRefGoogle Scholar
  63. Welker JM, Molau U, Parsons AN, Robinson CN, Wookey PA (1997) Responses of Dryas octopetala to ITEX environmental manipulations: a synthesis with circumpolar comparisons. Glob Change Biol 3:61–73. doi: 10.1111/j.1365-2486.1997.gcb143.x CrossRefGoogle Scholar
  64. Williams G (1966) Adaptation and natural selections. Princeton University Press, PrincetonGoogle Scholar
  65. Wookey PA, Parsons AN, Welker JM, Potter JA, Callaghan TV, Lee JA, Press MC (1993) Comparative responses of phenology and reproductive development to simulated environmental-change in sub-Arctic and high Arctic Plants. Oikos 67:490–502. doi: 10.2307/3545361 CrossRefGoogle Scholar
  66. Wookey PA, Welker JM, Parsons AN, Press MC, Callaghan TV, Lee JA (1994) Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high arctic polar semi-desert. Oikos 70:131–139. doi: 10.2307/3545708 CrossRefGoogle Scholar
  67. Zimmerman JK (1991) Ecological correlates of labile sex expression in the orchid Catasetum-Viridiflavum. Ecology 72:597–608. doi: 10.2307/2937200 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of Engineering and ScienceUniversity of AgderKristiansandNorway
  2. 2.Department of BiologyUniversity of BergenBergenNorway
  3. 3.Swedish Species Information CentreThe Swedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations