Advertisement

Plant Ecology

, Volume 204, Issue 2, pp 189–205 | Cite as

Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks

  • Rut Sánchez de DiosEmail author
  • Marta Benito-Garzón
  • Helios Sainz-Ollero
Article

Abstract

The present work proposes new boundaries for the current submediterranean territories of the Iberian Peninsula, defining them at the smallest scale attempted to date. The boundaries proposed are not sharp divisions but somewhat ‘gradual’, reflecting the transitional nature of the territories they encompass. Climate change predictions were used to estimate how the distribution of these submediterranean regions might change in the near future. The maps constructed are based on the distribution of marcescent Quercus species—trees that characterise the submediterranean plant landscape where they form the main forest communities. To determine their climatic range, the distribution of different types of Iberian oak forest was represented in ‘climate diagrams’ (ordination diagrams derived from principal components analysis), both in terms of individual species and groups of species based on leaf ecophysiological type, i.e. marcescent (Submediterranean), sclerophyllous (Mediterranean), semideciduous (Mediterranean) and deciduous (Eurosiberian). The climate range of each type of forest was determined, and the means of representative climate variables are analysed by one way ANOVA. The variables differentiating the forest groups were also examined by discriminant analysis. The range of the climate variables found to be associated with the majority of marcescent forests was used to determine the distribution of territories throughout the Peninsula with the same conditions (i.e. whether marcescent forests were present or not), thus providing a map of the Iberian submediterranean territories. Predictions of climate change were used to investigate possible climate-induced modifications in the boundaries of these territories in the near future. The patterns obtained show dramatic reductions in the extension of the Iberian submediterranean environment. Submediterranean conditions will probably disappear from the areas where they currently reign, and it seems unlikely that any new, large submediterranean areas will form by displacement towards higher altitudes. The outlook for the unique submediterranean vegetation of the Iberian Peninsula is gloomy.

Keywords

Marcescent Quercus Submediterranean Iberian Peninsula oak forests 

Notes

Acknowledgements

We wish to thank Dr. Javier Seoane for their valuable suggestions.

References

  1. Abadía A, Gil E, Morales F, Montañés L, Montserrat G, Abadía J (1996) Marcescence and senescence in a submediterranean oak (Quercus subpyrenaica) E. H. del Villar: photosynthetic characteristics and nutrient composition. Plant Cell Environ 19:685–694. doi: 10.1111/j.1365-3040.1996.tb00403.x CrossRefGoogle Scholar
  2. Amaral Franco J (1990) Quercus. In: Castroviejo S (ed) Flora Ibérica. Real Jardín Botánico de Madrid, CSIC, Madrid, pp 15–36Google Scholar
  3. Arora VK, Boer GJ (2005) A parametrization of leaf phenology for the terrestrial ecosystem component of climate models. Glob Change Biol 11:39–59. doi: 10.1111/j.1365-2486.2004.00890.x CrossRefGoogle Scholar
  4. Bakkenes M, Alkemade JRM, Ihle F, Leemans R, Latour B (2002) Assessing the effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Glob Change Biol 8:390–407. doi: 10.1046/j.1354-1013.2001.00467.x CrossRefGoogle Scholar
  5. Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sánchez-Goñi MF, Spessa A, Davis B, Stevenson AC (2004) Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis. J Veg Sci 15:635–646. doi: 10.1658/1100-9233(2004)015[0635:RBPTAC]2.0.CO;2 CrossRefGoogle Scholar
  6. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148. doi: 10.1146/annurev.es.16.110185.000553 CrossRefGoogle Scholar
  7. Benito Garzón M, Blazek R, Neteler M, Sánchez de Dios R, Sainz Ollero H, Furlanello C (2006) Machine learning models for predicting species habitat distribution suitability: an example with Pinus sylvestris L. for the Iberian Peninsula. Ecol Modell 197:383–393. doi: 10.1016/j.ecolmodel.2006.03.015 CrossRefGoogle Scholar
  8. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2007) Predictive modelling of tree species distributions on the Iberian Peninsula during the last glacial maximum and mid-holocene. Ecography 30:120–134Google Scholar
  9. Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian forests. Appl Veg Sci 11:169–178CrossRefGoogle Scholar
  10. Blasi C, Carranza ML, Filesi L, Tilia A, Acosta A (1999) Relation between climate and vegetation along a Mediterranean-Temperate boundary in central Italy. Glob Ecol Biogeogr 8:17–27. doi: 10.1046/j.1365-2699.1999.00121.x CrossRefGoogle Scholar
  11. Bolòs O (1985) Le territoire subméditerranéen et le territoire carpetano-atlantique dans la Peninsule Ibérique. Bot Helv 95(1):13–17Google Scholar
  12. Bolòs O, Vigo J (1984) Flora dels paîsos catalans. Barcino, BarcelonaGoogle Scholar
  13. Bonfil C, Cortés P, Espelta JM, Retana J (2004) The role of disturbance in the co-existence of the evergreen Quercus ilex and the deciduous Quercus cerrioides. J Veg Sci 15:423–430. doi: 10.1658/1100-9233(2004)015[0423:TRODIT]2.0.CO;2 Google Scholar
  14. Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Change 63(1–2):181–200. doi: 10.1023/B:CLIM.0000018507.71343.46 CrossRefGoogle Scholar
  15. Costa JC, Aguiar C, Capelo JH, Lousã M, Neto C (1998) Biogeografia de Portugal Continental. Quercetea 0:5–56Google Scholar
  16. Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (1997) Los bosques ibéricos. Una interpretación geobotánica, Planeta, BarcelonaGoogle Scholar
  17. del Río S, Penas A (2006) Potential distribution of semideciduous forests in Castile and Leon (Spain) in relation to climatic variations. Plant Ecol 185(2):269–282. doi: 10.1007/s11258-006-9103-x CrossRefGoogle Scholar
  18. Di Castri F, Hansen AJ (1992) The environment and development crisis as determinants of landscape dynamics. In: Di Castri F, Hansen AJ (eds) Landscape boundaries. Consequences for biotic diversity and ecological flows. Ecological studies 92. Springer, New York, pp 3–18Google Scholar
  19. Díaz Fernández PM, Jiménez Sancho MP, Martín Albertos S, de Tuero y de Reina M, Gil Sánchez L (1995) Regiones de procedencia de Quercus robur L., Q. petraea (Matt.) Liebl, y Q. humilis Miller. ICONA, MadridGoogle Scholar
  20. Dumberg A (1982) Why beach and oak trees retain leaves until spring: a comment on the contribution by Otto and Nilsson. Oikos 39:275–277. doi: 10.2307/3544497 CrossRefGoogle Scholar
  21. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SK, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  22. Escudero A, del Arco JM (1987) Ecological significance of the phenology of leaf abscission. Oikos 49:11–14. doi: 10.2307/3565549 CrossRefGoogle Scholar
  23. Espelta JM, Retana J, Habrouk A (2003) Resprouting patterns after fire and response to stool cleaning of two coexisting Mediterranean oaks with contrasting leaf habits on two different sites. For Ecol Manage 179:401–414. doi: 10.1016/S0378-1127(02)00541-8 CrossRefGoogle Scholar
  24. García Latorre J, García Latorre J (1996) Sur la répartition actuelle et historique du chene fagine (Quercus faginea) Lam. dens le sud-est de l’Espagne. Ecol Mediterranea 22(3/4):59–66Google Scholar
  25. Gil Sánchez L, Jiménez Sancho MP, Díaz-Fenández PM (1996) Quercus complex in Spain: an overview of its present state. In: Kremer A, Mühs H (eds) Inter- and intra-specific variation in European oaks: evolutionary implications and practical consequences, Brussels, June 15–16, 1994. Office for Official Publications of the European Communities, Brussels, Belgium, pp 295–318Google Scholar
  26. Gosz JR (1992) Ecological functions in a biome transition zone: translating local responses to broad scale dynamics. In: Hansen AJ, De Castri F (eds) Landscape boundaries. Consequences for biotic diversity and ecological flows. Springer, New York, pp 55–75Google Scholar
  27. Govaerts RHA, Avishai M (2000) The conserved type of the name Quercus pubescens Willd. (Fagaceae). Taxon 49:537. doi: 10.2307/1224350 CrossRefGoogle Scholar
  28. Greenwood DR (2005) Leaf form and the reconstruction of past climates. New Phytol 166:355–357. doi: 10.1111/j.1469-8137.2005.01380.x PubMedCrossRefGoogle Scholar
  29. Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x CrossRefGoogle Scholar
  30. Hrsak V (2003) Multivariate analysis of phyto-climatic patterns of the Croatian part of the eastern Adriatic coast. Plant Biosyst 137:281–292. doi: 10.1080/11263500312331351531 Google Scholar
  31. Jalut G, Amat AE, Riera i Mora S, Fontugne M, Mook R, Bonnet L, Gauquelin T (1997) Holocene climatic changes in the western Mediterranean: installation of the Mediterranean climate. Compte Rendu Acad Sci 325:327–334Google Scholar
  32. Maldonado FJ, Sainz Ollero H, Sánchez de Dios R, Xandri P (2001) Distribución y estado de conservación de los bosques españoles: un análisis de las carencias en la red de territorios protegidos. In: Camprodon i Subirachs J, Plana Bach E (eds) Conservación de la biodiversidad y gestión forestal. Universitat de Barcelona, Barcelona, pp 101–117Google Scholar
  33. M.A.P.A. (1974–1990) Caracterizaciones agroclimáticas de las provincias españolas. Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  34. Mazzoleni S, Spada F (1992) Deciduous broadleaved versus evergreen sclerophyllous forest. Disturbance and local shifting dominance in Mediterranean environments. In: Teller A, Mathy P, Jeffers JNR (eds) Responses of forest ecosystems to environmental changes. Elsevier Science Publishers, Amsterdam, NL, pp 839–842Google Scholar
  35. McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KSE (2001) Climate change 2001: impacts, adaptation & vulnerability. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change (IPCC). Cambridge University Press, UKGoogle Scholar
  36. Meusel H, Jäger E, Weinert E (1965) Vergleichende chorologie der zentraleuropäischen flora. Veb Gustab Fischer Verlag, JenaGoogle Scholar
  37. Mitasova H, Mitas L (1993) Interpolation by regularized spline with tension. I. Theory and implementation. Math Geol 25:641–655. doi: 10.1007/BF00893171 CrossRefGoogle Scholar
  38. Montserrat Martí G, Palacio Blasco S, Milla Gutiérrez R (2004) Fenología y características funcionales de las plantas leñosas mediterráneas. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, Madrid, pp 129–162Google Scholar
  39. Moreno JM, Díaz Pineda F, Rivas-Martínez S (1990) Climate and vegetation at the Eurosiberian-Mediterranean boundary in the Iberian Peninsula. J Veg Sci 1:233–244. doi: 10.2307/3235660 CrossRefGoogle Scholar
  40. Moreno Rodríguez JM (2005) Principales conclusiones de la evaluación preliminar de los impactos en España por efecto del cambio climático. Ministerio de Medio Ambiente, MadridGoogle Scholar
  41. Morla C, Pineda FD (1985) The woody vegetation in the Mediterranean-Atlantic boundary in the North West of the Iberian Peninsula. Candollea 40:435–446Google Scholar
  42. Nakicenovic N, Swart RE (2000) Emission scenarios. Special report of the intergovernmental panel on climate change. Cambridge University Press, UKGoogle Scholar
  43. Nicolini E, Chanson B (1999) The short shoot, an indicator of beech maturation (Fagus sylvatica L.). Can J Bot 77:1539–1550. doi: 10.1139/cjb-77-11-1539 CrossRefGoogle Scholar
  44. Nilsson SG (1983) Evolution of leaf abcission times: alternative hypotheses. Oikos 40:318–319. doi: 10.2307/3544599 CrossRefGoogle Scholar
  45. Oberdorfer E (1962) Pflanzensoziologische. Exkursionsflora, 2nd edn. Eugen Ulmer, Cop, SttutgatGoogle Scholar
  46. Otto C, Nilsson SG (1981) Why do beach and oak trees retain leaves until spring? Oikos 37:387–390. doi: 10.2307/3544134 CrossRefGoogle Scholar
  47. Ozenda P (1970) Sur une extensión de la notion de zone et d’étage subméditerranéens. Compte Rendu Soc Biogeographie 415:92–103Google Scholar
  48. Ozenda P (1982) Les végétaux dans la biosphère. Doin Editeurs, ParisGoogle Scholar
  49. Ozenda P (1994) Végétation du continent européen. Delachaux et Niestlé, ParisGoogle Scholar
  50. Peñuelas J, Filella I, Comas P (2002) Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Glob Change Biol 8:531–544. doi: 10.1046/j.1365-2486.2002.00489.x CrossRefGoogle Scholar
  51. Petit RJ, Hampe A, Cheddadi R (2005) Climate changes and tree phylogeography in the Mediterranean. Taxon 54:877–885Google Scholar
  52. Pons A, Quézel P (1998) Á propos de la mise en place du climat méditerrannéen. C R Acad Sci Paris Sciences de la terre et des Planétes 327:755–760Google Scholar
  53. Quézel P, Médail F (2003) Écologie et biogéographie des forêts du bassin méditerranéen. Elsevier, ParisGoogle Scholar
  54. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge, UKGoogle Scholar
  55. Riera-Mora S, Esteban-Amat A (1994) Vegetation history and human activity during the last 6000 years on the central Catalan coast (north-eastern Iberian Peninsula). Veg His Archaebot 3:7–23Google Scholar
  56. Rivas-Martínez S, Díaz TE, Fernández González F, Izco J, Loidi J, Lousa M, Penas A (2002) Vascular plant communities of Spain and Portugal. Itinera Geobotanica 15(1):1–431Google Scholar
  57. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60. doi: 10.1038/nature01333 PubMedCrossRefGoogle Scholar
  58. Ruiz de la Torre, J (1990–2003) Mapa Forestal de España. 1: 200.000. Ministerio de Agricultura, MadridGoogle Scholar
  59. Sánchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180. doi: 10.1016/j.gloplacha.2004.06.010 CrossRefGoogle Scholar
  60. Sánchez de Dios R, Benito-Garzón M, Sainz-Ollero H (2006) Hybrid zones between two European oaks: a plant community approach. Plant Ecol 187(1):109–125. doi: 10.1007/s11258-006-9136-1 CrossRefGoogle Scholar
  61. Sánchez Palomares O, Sánchez Serrano F, Carretero Carretero P (1999) Modelos y Cartografía de estimaciones climáticas termopluviométricas para España peninsular. INIA Ministerio de Agricultura Pesca y Alimentación, MadridGoogle Scholar
  62. Thuiller W (2003) BIOMOD optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362. doi: 10.1046/j.1365-2486.2003.00666.x CrossRefGoogle Scholar
  63. Traiser C, Klotz S, Uhl D, Mosbrugger V (2005) Environmental signals from leaves—a physiognomic analysis of European vegetation. New Phytol 166:465–484. doi: 10.1111/j.1469-8137.2005.01316.x PubMedCrossRefGoogle Scholar
  64. Urbieta IR, Zavala MA, Marañón T (2008) Human and no-human determinants of forest composition in southern Spain: evidence of shifts towards cork oak dominance as a result of management over the past century. J Biogeogr 35:1688–1700. doi: 10.1111/j.1365-2699.2008.01914.x CrossRefGoogle Scholar
  65. Walter H, Straka H (1954) Grundlagen der pflanzenverbreitung-II teil; Arealkunde. Einführung in die phytologie Ulmer, StuttgartGoogle Scholar
  66. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi: 10.1038/416389a PubMedCrossRefGoogle Scholar
  67. Wanntorp H-E (1983) Historical constraints in adaptation theory: traits and non-traits. Oikos 41:157–160. doi: 10.2307/3544367 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Rut Sánchez de Dios
    • 1
    Email author
  • Marta Benito-Garzón
    • 1
  • Helios Sainz-Ollero
    • 1
  1. 1.Botany Unit, Science FacultyUniversidad Autónoma de MadridMadridSpain

Personalised recommendations