Skip to main content
Log in

Population genetic consequences of the reproductive system in the liverwort Mannia fragrans

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Ecological factors affecting reproduction and dispersal are particularly important in determining genetic structure of plant populations. Polyoicous reproductive system is not rare in bryophytes; however, to date, nothing is known about its functioning and possible population genetic effects. Using the liverwort Mannia fragrans as a model species, the main aims of this study were to separate the relative importance of the components of the polyoicous reproductive system and to assess its consequences on the genetic structure of populations. High sex expression rates increasing with patch size and strongly female-biased sex ratios were detected. Additional input into clonal growth after production of sex organs was found in males compared to females. Similar clonal traits of the rare bisexual and asexual plants and preference toward newly colonized patches suggest that selection prefers colonizers that first develop organs of both sexes, hence ensuring sexual reproduction when no partner is present. Despite frequent spore production, ISSR markers revealed low genetic diversity, probably resulting from the effective clonal propagation of the species and frequent crossing between genetically identical plants. The presence of numerous rare alleles and unique recombinant haplotypes indicates occasional recombination and mutation. Effective spreading of new haplotypes is probably hampered however by large spore size. Since populations are small and isolated, such haplotypes are probably continuously eliminated by genetic drift. These results suggest that although both sexual and asexual reproductions seem to be effective, asexual components of the reproductive system play a greater role in shaping the genetic composition of the populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agapow PM, Burt A (2000) MultiLocus 1.2. Analysing multi-locus population genetic data. Department of Biology, Imperial College, Ascot

    Google Scholar 

  • Bhatla SC, Chopra RN (1981) Hormonal regulation of gametangial formation in the moss Bryum argenteum Hedw. J Exp Bot 32:1243–1256

    Article  CAS  Google Scholar 

  • Bisang I, Ehrlén J (2002) Reproductive effort and cost of sexual reproduction in female Dicranum polysetum. Bryologist 105:384–397. doi:10.1639/0007-2745(2002)105[0384:REACOS]2.0.CO;2

    Article  Google Scholar 

  • Bisang I, Hedenäs L (2005) Sex ratio patterns in dioicous bryophytes re-visited. J Bryol 7:207–219. doi:10.1179/174328205X69959

    Article  Google Scholar 

  • Bischler H, Boisselier-Dubayle MC (1993) Variation in a polyploid, dioicous liverwort, Marchantia globosa. Am J Bot 80:953–958. doi:10.2307/2445516

    Article  Google Scholar 

  • Boisselier-Dubayle MC, Bischler H (1997) Enzyme polymorphism in Preissia quadrata (Hepaticae, Marchantiaceae). Plant Syst Evol 205:73–84. doi:10.1007/BF00982798

    Article  Google Scholar 

  • Chopra RN, Sood S (1973) In vitro studies in Marchantiales. I. Effects of some carbohydrates, agar, pH, light and growth regulators on the growth and sexuality in Riccia crystallina. Phytomorphology 23:230–244

    CAS  Google Scholar 

  • Damsholt K (2002) Illustrated flora of nordic liverworts and hornworts. Nordic Bryological Society, Lund

    Google Scholar 

  • Dewey RM (1989) Genetic variation in the liverwort Riccia dictyospora (Ricciaceae, Hepaticopsida). Syst Bot 14:155–167. doi:10.2307/2418903

    Article  Google Scholar 

  • During HJ (1992) Ecological classification of bryophytes and lichens. In: Bates JW, Farmer AM (eds) Bryophytes and lichens in a changing environment. Oxford University Press, Oxford

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Fernandez H, Bertrand AM, Feito I, Sanchez-Tames R (1997) Gametophyte culture in vitro and atheridiogen activity in Blechnum spicant. Plant Cell Tissue Organ Cult 50:71–74. doi:10.1023/A:1005962726905

    Article  CAS  Google Scholar 

  • Fisher RA (1930) The genetic theory of natural selection. Oxford University Press

  • Fritsch R (1991) Index to bryophyte chromosome counts. Bryophytorum Bibl 40, J. Cramer, Berlin-Stuttgart

  • Glime JM (2007) Bryophyte ecology, vol 1. Physiological ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. http://www.bryoecol.mtu.edu. Accessed 24 Nov 2008

  • Gunnarsson U, Hassel K, Söderström L (2005) Genetic structure of the endangered peat moss Sphagnum angermanicum in Sweden: a result of historic or contemporary processes? Bryologist 108:194–203. doi:10.1639/0007-2745(2005)108[0194:GSOTEP]2.0.CO;2

    Article  CAS  Google Scholar 

  • Hassel K, Såstad SM, Gunnarsson U et al (2005) Genetic variation and structure in the expanding moss Pogonatum dentatum (Polytrichaceae) in its area of origin and in a recently colonized area. Am J Bot 92:1684–1690. doi:10.3732/ajb.92.10.1684

    Article  CAS  Google Scholar 

  • Haupt AW (1921) Gametophyte and sex organs of Reboulia hemisphaerica. Bot Gaz 71:61–74. doi:10.1086/332789

    Article  Google Scholar 

  • Haupt AW (1926) Morphology of Preissia quadrata. Bot Gaz 82:30–54. doi:10.1086/333632

    Article  Google Scholar 

  • Haupt AW (1929) Studies in Californian Hepaticae. I. Asterella californica. Bot Gaz 87:302–319. doi:10.1086/333935

    Article  Google Scholar 

  • Hock Z (2007) Propagule banks in bryophytes and ferns: dynamics, genetic composition and the role of the life history. PhD thesis, University of Zurich, Switzerland

  • Hock Zs, Szövényi P, Schneller JJ, Urmi E, Tóth Z (2008) Are sexual or asexual events determining the genetic structure of populations in the liverwort Mannia fragrans? J Bryol 30:66–73

    Article  Google Scholar 

  • Kimmerer RW (1994) Ecological consequences of sexual versus asexual reproduction in Dicranum flagellare and Tetraphis pellucida. Bryologist 97:20–25. doi:10.2307/3243344

    Article  Google Scholar 

  • Khanna KR (1964) Differential evolutionary activity in bryophytes. Evolution 18:652–670. doi:10.2307/2406218

    Article  Google Scholar 

  • Korpelainen H (1998) Labile sex expression in plants. Biol Rev Camb Philos Soc 73:157–180. doi:10.1017/S0006323197005148

    Article  Google Scholar 

  • Kumra PK, Chopra RN (1983) Effect of some physical factors on growth and gametangial induction in male clones of three mosses grown in vitro. Bot Gaz 144:533–539. doi:10.1086/337407

    Article  Google Scholar 

  • Leitgeb H (1881) Untersuchungen über die Lebermoose, 6th edn. Die Marchantieen, Graz

    Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95. doi:10.1146/annurev.es.15.110184.000433

    Article  Google Scholar 

  • McLetchie DN, Puterbaugh MN (2000) Population sex ratios, sex-specific clonal traits and tradeoffs among these traits in the liverwort Marchantia inflexa. Oikos 90:227–237. doi:10.1034/j.1600-0706.2000.900203.x

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press

  • Odrzykoski I, Szweykowski J (1981) An interesting enzymatic polymorphism in some European populations of the liverwort Mannia fragrans (Balbis) Frye and Clark. In: Szweykowski J (ed) New perspectives in bryotaxonomy and bryogeography. Adam Mickiewicz University, Poznan

    Google Scholar 

  • Paton JA (1999) The liverwort flora of the British Isles. Harley Books, Colchester

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pohjamo M, Laaka-Lindberg S (2003) Reproductive modes in the epixylic hepatic Anastrophyllum hellerianum. Perspect Plant Ecol Evol Syst 6:159–168. doi:10.1078/1433-8319-00074

    Article  Google Scholar 

  • Ramsay HP, Berrie GK (1982) Sex determination in bryophytes. J Hattori Bot Lab 52:255–274

    Google Scholar 

  • Read DJ, Duckett JG, Francis R et al (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc B Biol Sci 355:815–831. doi:10.1098/rstb.2000.0617

    Article  CAS  Google Scholar 

  • Rydgren K, Økland RH (2003) Short-term costs of sexual reproduction in the clonal moss Hylocomium splendens. Bryologist 106:212–220. doi:10.1639/0007-2745(2003)106[0212:SCOSRI]2.0.CO;2

    Article  Google Scholar 

  • Schuster RM (1992) The Hepaticae and Anthocerotae of North America east of the hundredth meridian, vol VI. Field Museum of Natural History, Chicago

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman and Co, New York

    Google Scholar 

  • SPSS for Windows, Release 11.0.1 (2001) SPSS Incorporated, Chicago, USA

  • Stark LR (2002a) Skipped reproductive cycles and extensive sporophyte abortion in the desert moss Tortula inermis correspond to unusual rainfall patterns. Can J Bot 80:533–542

    Article  Google Scholar 

  • Stark LR (2002b) Phenology and its repercussions on the reproductive ecology of mosses. Bryologist 105:204–218

    Article  Google Scholar 

  • Stark LR, McLetchie DN, Mishler BD (2001) Sex expression and sex dimorphism in sporophytic populations of the desert moss Syntrichia caninervis. Plant Ecol 157:183–196

    Article  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Funct Ecol 3:259–268

    Article  Google Scholar 

  • Stenøien HK, Såstad SM (2001) Genetic variability in bryophytes: does mating system really matter? J Bryol 23:313–318

    Google Scholar 

  • Szweykowski J, Zielinski R (1983) Isoenzymatic variation in polish populations of the moss Plagiothecium undulatum (Hedw.) B. S. G. A preliminary report. J Hattori Bot Lab 54:119–123

    Google Scholar 

  • Wilkinson M (2001) PICA 4.0: software and documentation. Department of Zoology, The Natural History Museum, London

    Google Scholar 

  • Wolfe AD, Liston A (1998) Contributions of the polymerase chain reaction to plant systematics. In: Soltis DE, Soltis PE, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, New York

    Google Scholar 

  • Wyatt R (1994) Population genetics of bryophytes in relation to their reproductive biology. J Hatt Bot Lab 76:147–157

    Google Scholar 

  • Wyatt R, Anderson LE (1984) Breeding systems of bryophytes. In: Dyer AF, Duckett JG (eds) The experimental biology of bryophytes. Academic Press, London

    Google Scholar 

  • Wyatt R, Stoneburner A, Odrzykoski I (1989) Bryophyte isozymes: systematic and evolutionary implications. In: Soltis DE, Soltis PS (eds) Plant isozymes. Dioscorides, Portland

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by a grant of the Hungarian Scientific Research Fund (OTKA-T047156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsófia Hock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hock, Z., Szövényi, P., Schneller, J.J. et al. Population genetic consequences of the reproductive system in the liverwort Mannia fragrans . Plant Ecol 202, 123–134 (2009). https://doi.org/10.1007/s11258-008-9541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9541-8

Keywords

Navigation