Plant Ecology

, 202:113 | Cite as

Germination behaviour of 14 Mediterranean species in relation to fire factors: smoke and heat

Article

Abstract

Fire is an ecological factor that has been present in the ecosystems of the Mediterranean region for thousands of years. Our study was undertaken to acquire knowledge of the effect of fire on the germination of Mediterranean species. We used high temperatures (up to 60°C) and smoke to determine the effect of these factors on the germination of species from the Mediterranean region. The species selected are characteristic of the central Mediterranean basin and are representative of both woody and herbaceous species: Rhamnus alaternus L., Cistus albidus L., Cistus monspeliensis L., Fumana ericoides (Cav.) Gand., Rosmarinus officinalis L., Melica ciliata L., Avena sterilis L., Bituminaria bituminosa (L.) C.H. Stirt., Anthyllis vulneraria L., Coronilla glauca L., Argyrolobium zanonii (Turra) P.W. Balland, Emerus major Mill., Genista scorpius (L.) D.C. and Spartium junceum L. The seeds were collected in Mediterranean shrubland (8) and woodland (6) ecosystems, around Montpellier, France (24°45′N and 3°50′E). Ten treatments were tested: a control, three smoke treatments and six heat treatments. The average germination level (germination percentage) and the average T50 rates (time taken to reach 50% of germination) were calculated. The smoke and heat act in a different way on each of the species. The smoke enhanced the germination of two species, whilst moderate heat increased germination in all of the species excepting R. officinalis, F. ericoides, A. sterilis, A. vulneraria, and G. scorpius. Germination was fastest in M. ciliata and S. junceum and slowest in A. sterilis, E. major and C. albidus. The cues did not significantly affect the rate of germination. Fire modified the germination response of 12 of the 14 species studied.

Keywords

Fire Mediterranean plant species Germination High temperatures Plant-derived smoke 

References

  1. Ballini C (1992) Écophysiologie de la germination des graines d’Ulex parviflorus Pourr. Bull Ecol 23:119–130Google Scholar
  2. Benjamini Y, Yekutieli D (2001) The control of false discovery rate under dependency. Ann Stat 29:1165–1188. doi:10.1214/aos/1013699998 CrossRefGoogle Scholar
  3. Bradstock RA, Auld TD (1995) Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J Appl Ecol 32:76–84. doi:10.2307/2404417 CrossRefGoogle Scholar
  4. Brown NA (1993) Seed germination in the Fynbos fire ephemeral, Syncarpha vestita (L.) B. Nord. is promoted by smoke aqueous extracts of smoke and charred wood derived from burning the ericoid-leaved shrub, Passerina vulgaris Thoday. Int J Wildland Fire 3:203–206. doi:10.1071/WF9930203 CrossRefGoogle Scholar
  5. Brown NAC, Botha PA (2004) Smoke seed germination studies and a guide to seed propagation of plants from the major families of the Cape Floristic Region, South Africa. S Afr J Bot 70:559–581Google Scholar
  6. Brown NAC, Kotze G, Botha PA (1993) The promotion of seed germination of Cape Erica species by plant-derived smoke. Seed Sci Technol 21:573–580Google Scholar
  7. Casal M, Prado S, Reyes O, Rivas M (2001) Efecto del fuego sobre la germinación de varias especies leguminosas arbustivas. In: III Congreso Forestal Español, Mesa, vol 4, pp 475–481, GranadaGoogle Scholar
  8. Crosti R, Ladd PG, Dixon KW, Piotto B (2006) Post-fire germination: the effect of smoke on seeds of selected species from the central Mediterranean basin. For Ecol Manag 221:306–312Google Scholar
  9. De Bano LF, Dunn PH, Conrad CE (1977) Fire’s effect on physical and chemical properties of Chaparral soils. In: Proceedings of the symposium on the environmental consequences of fire and fuel management in Mediterranean ecosystems, pp 65–74Google Scholar
  10. De Lange JH, Boucher C (1990) Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot 56:700–702Google Scholar
  11. Díaz-Fierros F, Benito E, Vega J, Castelao A, Soto B, Pérez R, Taboada T (1990) Solute loss and soil erosion in burnt soil from Galicia (NW Spain). In: Goldammer JG, Jenkins MJ (eds) Fire in ecosystems dynamics. SPB Academic Publishing, The Hague, pp 103–116Google Scholar
  12. Dixon KX, Roche S, Pate JS (1995) The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101:185–192. doi:10.1007/BF00317282 CrossRefGoogle Scholar
  13. Ferrandis P, Martínez-Sánchez JJ, Herránz JM, De Las Heras J (1998) Effect of fire on the soil seed bank in a Mediterranean ecosystem in Central Spain. In: Trabaud L (ed) Fire management and landscape ecology. Association of Wildland Fire, Fairfield, pp 222–237Google Scholar
  14. Gashaw M, Michelsen A (2002) Influence of heat shock on seed germination of plants from regularly burnt savanna woodlands and grasslands in Ethiopia. Plant Ecol 159:83–93. doi:10.1023/A:1015536900330 CrossRefGoogle Scholar
  15. González-Rabanal F, Casal M (1995) Effect of high temperatures and ash on germination of ten species from gorse shrubland. Vegetatio 116:123–131. doi:10.1007/BF00045303 CrossRefGoogle Scholar
  16. González-Rabanal F, Casal M, Trabaud L (1994) Effect of high temperatures, ash and seed position in the inflorescence on the germination of three Spanish grasses. J Veg Sci 5:289–294. doi:10.2307/3235851 CrossRefGoogle Scholar
  17. Hanley E, Lamont B (2000) Heat pre-treatment and the germination of soil- and canopy-stored seeds of south-western Australian species. Acta Oecol 21:315–321. doi:10.1016/S1146-609X(00)01087-0 CrossRefGoogle Scholar
  18. Herránz JM, Ferrandis P, Martínez-Sánchez JJ (1998) Influence of heat on seed germination of seven Mediterranean Leguminosae. Plant Ecol 136:95–103. doi:10.1023/A:1009702318641 CrossRefGoogle Scholar
  19. Herránz JM, Ferrandis P, Martínez-Sánchez JJ (2000) Influence of heat on seed germination of nine woody Cistaceae species. Int J Wildland Fire 9:173–182. doi:10.1071/WF00014 CrossRefGoogle Scholar
  20. Keeley JE (1987) Role of fire in seed germination of woody taxa in California chaparral. Ecology 68:434–443. doi:10.2307/1939275 CrossRefGoogle Scholar
  21. Keeley JE (1994) Seed-germination patterns in fire-prone Mediterranean-climate regions. In: Arroyo MTK, Zedler PH, Fox MD (eds) Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer-Verlag, New YorkGoogle Scholar
  22. Keeley JE, Fotheringham CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276:1248–1250. doi:10.1126/science.276.5316.1248 CrossRefGoogle Scholar
  23. Keeley JE, Fotheringham CJ (1998) Mechanism of smoke-induced seed germination in a post-fire chaparral annual. J Ecol 86:27–36. doi:10.1046/j.1365-2745.1998.00230.x CrossRefGoogle Scholar
  24. Kenny BJ (2000) Influence of multiple fire-related germination cues on three Sydney Grevillea (Protaceae) species. Austral Ecol 5:664–669. doi:10.1046/j.1442-9993.2000.01066.x CrossRefGoogle Scholar
  25. Morris EC, Tieu A, Dixon K (2000) Seed coat dormancy in two species of Grevillea (Protaceae). Ann Bot (Lond) 86:771–775. doi:10.1006/anbo.2000.1249 CrossRefGoogle Scholar
  26. Morrison DA, Morris Ch (2000) Pseudoreplication in experimental designs for the manipulation of seed germination treatments. Austral Ecol 25:292–296Google Scholar
  27. Pérez-Fernández MA, Rodríguez-Echevarría S (2003) Effect of smoke, charred wood and nitrogenous compounds on seed germination of ten species from woodland in Central-Wester Spain. J Chem Ecol 29:237–251. doi:10.1023/A:1021997118146 PubMedCrossRefGoogle Scholar
  28. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, CambridgeGoogle Scholar
  29. Read TR, Bellairs SM (1999) Smoke affects the germination of native grasses of New South Wales. Aust J Bot 47:563–576. doi:10.1071/BT97124 CrossRefGoogle Scholar
  30. Read TR, Bellairs SM, Mulligan DR, Lamb D (2000) Smoke and heat effects on soil seed bank germination for the re-establishment of native forest community in New South Wales. Austral Ecol 25:48–57Google Scholar
  31. Reyes O, Boedo M (2001) El fuego como controlador de la germinación de Cytisus striatus y de C. multiflorus y su aplicación agronómica. In: III Congreso Forestal Español, Mesa, vol 6, pp 15–21, GranadaGoogle Scholar
  32. Reyes O, Casal M (1995) Germination behaviour of 3 species of the genus Pinus in relation to high temperatures suffered during forest fires. Ann For Sci 52:385–392. doi:10.1051/forest:19950408 CrossRefGoogle Scholar
  33. Reyes O, Casal M, Trabaud L (1997) The influence of population, fire and time of dissemination on the germination of Betula pendula seeds. Plant Ecol 133:201–208. doi:10.1023/A:1009751513547 CrossRefGoogle Scholar
  34. Salvador R, Lloret F (1995) Germinación en el laboratorio de varias especies arbustivas mediterráneas: efecto de la temperatura. Orsis 10:25–34Google Scholar
  35. Tárrega R, Calvo L, Trabaud L (1992) Effect of high temperatures on seed germination of two woody Leguminosae. Vegetatio 102:139–147. doi:10.1007/BF00044730 CrossRefGoogle Scholar
  36. Thanos CA, Georghiou K, Kadis K, Pantazi C (1992) Cistaceae: a plant family with hard seeds. Isr J Bot 41:251–263Google Scholar
  37. Thomas PB, Morris EC, Auld TD (2003) Interactive effects of heat shock and smoke on germination of nine species forming soil seed banks within the Sydney region. Austral Ecol 28:674–683. doi:10.1046/j.1442-9993.2003.1330.doc.x CrossRefGoogle Scholar
  38. Tierney DA (2006) The effect of fire-related germination cues on the germination of a declining forest understory species. Aust J Bot 54(3):297–303. doi:10.1071/BT05111 CrossRefGoogle Scholar
  39. Trabaud L (1979) Etude du comportement du feu dans la garrigue de Chêne kermès à partir des températures et des vitesses de propagation. Ann For Sci 36:13–38CrossRefGoogle Scholar
  40. Trabaud L, Casal M (1989) Résponses des semences de Rosmarinus officinalis à différents traitemenets simulant une action de feu. Acta Oecol 10:355–363Google Scholar
  41. Trabaud L, Oustric J (1989) Heat requirements for seed germination of three Cistus species in the garrigue of Southern France. Flora 183:321–325Google Scholar
  42. Turner SR, Merritt DJ, Baskin CC, Dixon KW, Baskin JM (2005) Physical dormancy in seeds of six genera of Australian Rhamnaceae. Seed Sci Res 14:51–58. doi:10.1079/SSR2004197 CrossRefGoogle Scholar
  43. Valbuena L, Tárrega R, Luis E (1992) Influence of heat on seed germination of Cistus laurifolius, and Cistus ladanifer. Int J Wildland Fire 2:15–20. doi:10.1071/WF9920015 CrossRefGoogle Scholar
  44. Vallete JC, Gomedy V, Maeréchal J, Houssard C, Gillon D (1994) Heat transfer in the soil during very low-intensity experimental fires: the role of duff and soil moisture content. Int J Wildland Fire 4:225–237. doi:10.1071/WF9940225 CrossRefGoogle Scholar
  45. Van Der Venter HA, Esterhuizen AD (1988) The effects of factors associated with fire on seed germination of Erica sessiflora and E. hebecalyx (Ericaceae). S Afr J Bot 54:301–304Google Scholar
  46. Vega JA, Cuiñas P, Fontúrbel MT, Peréz-Gorostiaga P, Fernández C (2000) Desarrollo de los nuevos modelos de predicción. In: Vélez R (ed) La defensa contra incendios forestales, fundamentos y experiencias. McGraw Hill, MadridGoogle Scholar
  47. Ward SC, Koch JM, Grant CD (1997) Ecological aspects of soil seed-banks in relation to bauxite mining: I. Unmined jarrah forest. Aust J Ecol 22:169–176. doi:10.1111/j.1442-9993.1997.tb00656.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Área de Ecología, Departamento de Biología Celular y Ecología, Facultad de BiologíaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Área de Ecología, Departamento de Biología Celular y Ecología, Escuela Politécnica SuperiorUniversidad de Santiago de CompostelaLugoSpain
  3. 3.Centre d’Ecologie Fonctionelle et EvolutiveCNRSMontpellierFrance

Personalised recommendations