Skip to main content

Elemental allelopathy: processes, progress, and pitfalls

Abstract

Allelopathic interference between plants has generally been discussed in terms of the production of toxic complex biochemicals; however, complex biochemicals may not be the only substances plants use to interfere with one another. It has also been suggested that inorganic elements may be used in an allelopathic manner. If, through phytoenrichment or root exudates, a plant is able to increase the bioavailable levels of a particular element and tolerate the levels better than its neighbors, it can produce an allelopathic effect. Elemental allelopathy has been implicated as the cause for the success of a number of invasive weeds, including Acroptilon repens, Tamarix spp., Halogeton glomeratus, Salsola iberica, and Mesambryenthemum crystallinum. Phytoenrichment of elements can occur through hyperaccumulation and litter deposition and by altering rhizosphere chemistry. Reported cases of elemental allelopathy have involved three types of elements: heavy metals and soluble salts in terrestrial systems and elemental S in aquatic systems. For the most part, studies that have reported elemental allelopathy have been inconclusive. In order to prevent overreaching conclusions in the study of biochemical allelopathy, criteria were set that can be adapted to the study of elemental allelopathy. Of the studies reviewed, the most common criteria left uninvestigated were whether the plant was actually responsible for changing the concentration of the element and whether the increased levels of an element negatively affected other species. If the study of elemental allelopathy is to avoid the same problems often associated with the study of biochemical allelopathy, these criteria should be included in investigations of elemental allelopathy.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Amacher MC (1999) Manual of Methods. Open-file Rep (US Geol Surv), 1999 edn. USDA Forest Service Intermountain Research Station, Forestry Sciences Laboratory, Logan Utah

  • Bailey J, Schweitzer J, Whitham T (2001) Salt cedar negatively affects biodiversity of aquatic macroinvertebrates. Wetlands 21:442–447. doi:10.1672/0277-5212(2001)021[0442:SCNABO]2.0.CO;2

    Article  Google Scholar 

  • Bais H, Walker T, Sternitz F et al (2002) Enantiomeric-dependant phytotoxic and antimicrobial activity of (+/−)-catechin: A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol 128:1173–1179. doi:10.1104/pp. 011019

    Article  PubMed  CAS  Google Scholar 

  • Baker A, Brooks R (1989) Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker A, McGrath S, Sidoli C et al (1994a) The possibility of in-situ heavy metal decontamination of polluted soils using crops of metal-accumulating crops. Resour Conserv Recycl 11:41–49. doi:10.1016/0921-3449(94)90077-9

    Article  Google Scholar 

  • Baker A, Reeves R, Hajar A (1994b) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens (Brassicaceae). New Phytol 127:61–68. doi:10.1111/j.1469-8137.1994.tb04259.x

    Article  CAS  Google Scholar 

  • Baker A, McGrath S, Reeves R et al (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G, Vangronsveld J (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton

    Google Scholar 

  • Blaylock M, Salt D, Dushenkov S et al (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865. doi:10.1021/es960552a

    Article  Google Scholar 

  • Bohn H, McNeal B, O’Connor G (2001) Soil chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Booth M, Caldwell M, Stark J (2003) Overlapping resource use in three Great Basin species: Implications for community invasibility and vegetation dynamics. J Ecol 91:36–48. doi:10.1046/j.1365-2745.2003.00739.x

    Article  Google Scholar 

  • Bottoms R (2001) Grass knapweed interference involves allelopathic factors associated with ecosystem nutrient cycling. Dissertation, University of Missouri, Columbia, Missouri

  • Boyd R, Jaffre T (2001) Phytoenrichment of soil Ni by Sebertia acuminata in New Caledonia and the concept of elemental allelopathy. S Afr J Sci 97:535–538

    CAS  Google Scholar 

  • Boyd R, Martens S (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7. doi:10.1007/s000490050002

    Article  CAS  Google Scholar 

  • Boyd R, Jaffre T, Odom J (1999) Variation in nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410. doi:10.1111/j.1744-7429.1999.tb00382.x

    Article  Google Scholar 

  • Brady W, Eick M, Grossl P et al (2003) A site-specific approach for the evaluation of natural attenuation at metals-impacted sites. Soil Sediment Contam 12:541–564. doi:10.1080/713610988

    Article  CAS  Google Scholar 

  • Brooks R (1987) Serpentine and its vegetation. Discorides Press, Portland

    Google Scholar 

  • Callaway R, Aschehoug E (2000) Invasive plants versus their new and old neighbors: A mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521

    Article  PubMed  CAS  Google Scholar 

  • Callaway R, Ridenour W (2004) Novel weapons: Invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Article  Google Scholar 

  • Cunningham S, Berti W, Huang J (1995a) Phytoremediation of contaminated soils. Biotechnology 13(9):393–397

    CAS  Google Scholar 

  • Cunningham S, Berti W, Huang J (1995b) Remediation of contaminated soils and sludges by green plants. In: Hinchee R, Means J, Burris D (eds) Bioremediation of inorganics. Battelle Press, Columbus

    Google Scholar 

  • DiTomaso J (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol 12:326–336

    Google Scholar 

  • Duda J, Freeman D, Emlen J, Belnap J, Kitchen S, Zak J et al (2003) Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biol Fertil Soils 38:72–77. doi:10.1007/s00374-003-0638-x

    Article  CAS  Google Scholar 

  • Ehrenfeld J (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems (N Y, Print) 6:503–523. doi:10.1007/s10021-002-0151-3

    Article  CAS  Google Scholar 

  • Fletcher R, Renney A (1963) A growth inhibitor found in Centaurea spp. Can J Plant Sci 43:475–481

    Article  CAS  Google Scholar 

  • Frey B, Keller C, Zierold K et al (2000) Distribution in functionally different epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–687. doi:10.1046/j.1365-3040.2000.00590.x

    Article  CAS  Google Scholar 

  • Fuerst E, Putnam A (1983) Separating the competitive and allelopathic components of interference. J Chem Ecol 9:937–944. doi:10.1007/BF00982203

    Article  CAS  Google Scholar 

  • Gabrielli R, Mattioni C, Vergnano O (1991) Accumulation mechanisms and heavy metal tolerance of a nickel hyper-accumulator. J Plant Nutr 14:1067–1080

    Article  Google Scholar 

  • Gavlak R, Horneck D, Miller R et al (2003) Soil, plant and water reference methods for the western region, 2nd edn. (Wrep-125). Oregon State University, Corvallis, Oregon, USA

  • Gross E (2003) Allelopathy of aquatic autotrophs. Crit Rev Plant Sci 22:313–339. doi:10.1080/713610859

    Article  Google Scholar 

  • Grossl P, Sparks D (2008) Chemical analyses. In: Chesworth W (ed) Encyclopedia of Soil Science. Ward Springer, Dordrecht

    Google Scholar 

  • Grossl P, Sparks D, Ainsworth C (1994) Pressure-jump kinetic study of Cu(II) adsorption/desorption on goethite. Environ Sci Technol 28:1422–1429. doi:10.1021/es00057a008

    Article  CAS  Google Scholar 

  • Harper J (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Harper K, Van Buren R, Kitchen K (1996) Invasion of alien annuals and ecological consequences in salt desert shrublands of western Utah. In Barrow J, McArthur E, Sosebee R et al (eds) Proceedings: Shrubland ecosystem dynamics in a changing environment. Gen.Tech.Rep. INT-GTR-338. USDA Forest Service Intermountain Research Station, Ogden, Utah, USA

  • Huang J, Chen J, Berti W et al (1997) Phytoremediation of lead-contaminated soils: Role of synthetic chelating agents in lead phytoextraction. Environ Sci Technol 31:800–880. doi:10.1021/es9604828

    Article  CAS  Google Scholar 

  • Inderjit, Dakshini K (1995) On laboratory bioassays in allelopathy. Bot Rev 61:28–44

    Article  Google Scholar 

  • Inderjit, del Moral R (1997) Is separating resource competition from allelopathy realistic? Bot Rev 63:221–230

    Article  Google Scholar 

  • Jurinak J, Tanji K (1993) Geochemical factors affecting trace element mobility. J Irrig Drain Eng 119:848–867. doi:10.1061/(ASCE)0733-9437(1993)119:5(848)

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, New York

    Google Scholar 

  • Klironomos J (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nat 417:67–70. doi:10.1038/417067a

    Article  CAS  Google Scholar 

  • Kloot P (1983) The role of common iceplant (Mesembryanthemum crystallinum) in the deterioration of medic pastures. Aust J Ecol 8:301–306

    Google Scholar 

  • Knight B, Zhao F, McGrath S et al (1997) Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant Soil 197:71–78. doi:10.1023/A:1004255323909

    Article  CAS  Google Scholar 

  • Koch MI, Mendelssohn I, McKee K (1990) Mechanism for the hydrogen sulfide–induced growth limitation in wetland macrophytes. Limnol Oceanogr 35:399–408

    CAS  Google Scholar 

  • Ladenburger C, Hild A, Kazmer D et al (2006) Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA. J Arid Environ 65:111–128. doi:10.1016/j.jaridenv.2005.07.004

    Article  Google Scholar 

  • Lasat M, Baker A, Kochian L (1996) Physiological characterization of root Zn2+ absorption and translocation in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    PubMed  CAS  Google Scholar 

  • Lawlor D (1991) Concepts of nutrition in relation to cellular processes and environment. In: Lawlor D, Porter J (eds) Plant growth: Interactions with nutrition and environment. Cambridge University Press, New York

    Google Scholar 

  • Lesica P, DeLuca T (2004) Is tamarisk allelopathic? Plant Soil 267:357–365. doi:10.1007/s11104-005-0153-y

    Article  CAS  Google Scholar 

  • Lombardini L (2006) Ecophysiology of plants in dry environments. In: D’Odorico P, Porporato A (eds) Dryland ecohydrology. Springer, Dordrecht

    Google Scholar 

  • Mackowiak C, Grossl P, Bugbee B (2001) Beneficial effects of humic acid on micronutrient availability to wheat. Soil Sci Soc Am J 65:1744–1750

    PubMed  CAS  Google Scholar 

  • Marshner H (1995) Mineral nutrition of higher plants. Academic Press, New York

    Google Scholar 

  • McNair M (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105. doi:10.1016/S0065-2296(05)40002-6

    Article  Google Scholar 

  • McQueen I, Miller R (1972) Soil-moisture and energy relationships associated with riparian vegetation near San Carlos, Arizona. USGS Professional Paper 655-E

  • Melgoza G, Nowak R, Tausch R (1990) Soil water exploitation after fire: Competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83:7–13. doi:10.1007/BF00324626

    Article  Google Scholar 

  • Morris I (1980) The physiological ecology of phytoplankton. University of California Press, Los Angeles

    Google Scholar 

  • Morris C, Call C, Monaco T et al (2006) Evaluation of elemental allelopathy in Acroptilon repens (L.) DC. (Russian knapweed). Plant Soil 289:279–288. doi:10.1007/s11104-006-9136-x

    Article  CAS  Google Scholar 

  • Nasir H, Iqbal Z, Hiradate S et al (2005) Allelopathic potential of Robinia pseudoacacia L. J Chem Ecol 31:2179–2192. doi:10.1007/s10886-005-6084-5

    Article  PubMed  CAS  Google Scholar 

  • Nicks L, Chambers M (1995) Farming for metals. Min Environ Manag 3:15–18

    Google Scholar 

  • Paschke M, Perry L, Redente E (2006) Zinc toxicity thresholds for reclamation forb species. Water Air Soil Pollut 170:317–330. doi:10.1007/s11270-006-3139-3

    Article  CAS  Google Scholar 

  • Postgate J (1959) Sulphate reduction by bacteria. Annu Rev Microbiol 13:505–520. doi:10.1146/annurev.mi.13.100159.002445

    Article  Google Scholar 

  • Reeves R (1992) Hyperaccumulation of nickel by serpentine plants. In: Proctor J et al (eds) The vegetation of ultramafic (serpentine) soils. Intercept Ltd, Andover

    Google Scholar 

  • Reeves R, Baker A, Brooks R (1995) Abnormal accumulation of trace metals by plants. Min Environ Manag 3:4–8

    Google Scholar 

  • Renella G, Chaudri AM, Falloon CM et al (2007) Effects of Cd, Zn, or both on soil microbial biomass and activity in a clay loam soil. Biol Fertil Soils 43:751–758. doi:10.1007/s00374-006-0159-5

    Article  CAS  Google Scholar 

  • Salt D, Prince R, Baker A et al (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using x-ray absorption spectroscopy. Environ Sci Technol 33:713–717. doi:10.1021/es980825x

    Article  CAS  Google Scholar 

  • Sharma M, Tongway D (1973) Plant induced soil salinity in two saltbush (Atriplex spp.) communities. J Range Manag 26:121–124. doi:10.2307/3896466

    Article  CAS  Google Scholar 

  • Sternitz F, Bais H, Foderaro T et al (2003) 7, 8-benzoflavone: A phytotoxin from root exudates of invasive Russian knapweed. Phytochemistry 64:493–497. doi:10.1016/S0031-9422(03)00276-0

    Article  CAS  Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water interface. Wiley Interscience, New York

    Google Scholar 

  • Tolra R, Poschenreider C, Barcelo J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutr 19:1541–1550

    Article  CAS  Google Scholar 

  • Turner F, Patrick W (1968) Chemical changes in waterlogged soils as a result of oxygen depletion. Trans 9th Int Cong. Soil Sci 4:53–63

    CAS  Google Scholar 

  • USDA (1954) Diagnosis and improvement of saline and alkaline soils: USDA Handbook #60. US Salinity Laboratory, Riverside, California, USA

  • Vivrette N, Muller C (1977) Mechanism of invasion and dominance of coastal grassland by Mesembryanthemum crystallinum. Ecol Monogr 47:301–318. doi:10.2307/1942519

    Article  Google Scholar 

  • Wang A, Angle J, Chaney R et al (2006) Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem 38:1451–1461. doi:10.1016/j.soilbio.2005.11.001

    Article  CAS  Google Scholar 

  • Whisenant S (1999) Repairing damaged wildlands: A process-orientated landscape scale approach. Cambridge University Press, London

    Google Scholar 

  • Wilson J, Agnew A (1992) Positive-feedback switches in plant communities. Adv Ecol Res 23:263–336

    Article  Google Scholar 

  • Wium-Andersen S, Anthoni U, Christopherson C et al (1982) Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales). Oikos 39:187–190. doi:10.2307/3544484

    Article  Google Scholar 

  • Wium-Andersen S, Anthoni U, Houen G (1983) Elemental sulphur, a possible allelopathic compound from Ceratophyllum demersum. Phytochemistry 22:2613. doi:10.1016/0031-9422(83)80178-2

    Article  CAS  Google Scholar 

  • Wyszkowska J, Boros E, Kucharski J (2007) Effect of interactions between nickel and other heavy metals on the soil microbiological properties. Plant Soil Environ 53:544–552

    CAS  Google Scholar 

  • Zhang L, Angle J, Delorme T et al (2005) Degradation of Alyssum murale biomass in soil. Int J Phytoremediation 7:169–176. doi:10.1080/16226510500214475

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Angle J, Chaney R (2007) Do high-nickel leaves shed by the nickel hyperaccumulator Alyssum murale inhibit seed germination of competing plants? New Phytol 173:509–516. doi:10.1111/j.1469-8137.2006.01952.x

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christo Morris.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morris, C., Grossl, P.R. & Call, C.A. Elemental allelopathy: processes, progress, and pitfalls. Plant Ecol 202, 1–11 (2009). https://doi.org/10.1007/s11258-008-9470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9470-6

Keywords