Skip to main content

Advertisement

Log in

A conceptual model of coastal dune ecology synthesizing spatial gradients of vegetation, soil, and geomorphology

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Patterns of coastal dune vegetation are closely related with soil conditions controlled by geomorphic forms and processes. This study developed a conceptual model integrating these relationships in a spatially explicit manner. A rectangle of 180 × 280 m containing 126 grids of 20 × 20 m was established in the Sindu coastal dunefield in west Korean Peninsula. Sampling from each grid determined 11 soil properties and identified percent cover of 21 woody and herbaceous plant species. Digital elevation models were generated by topographic survey and used to derive eight topographic parameters. Redundancy analysis and canonical correspondence analysis examined the effect of geomorphic factors on edaphic characteristics and the edaphic influence on spatial distribution of vegetation, respectively. The spatial pattern of soil properties and plant species were inferred from spatial interpolation techniques. In the foredune area, distance from the coastline was a significant indicator of soil nutrients derived from the marine sources by aeolian processes. This favored the dominance by Elymus mollis. Moisture-tolerant species (e.g., Calamagrostis epigeios) had high cover in the acidic soils of dune slacks, which covaried with wetness index, an indirect measure of the depth to the freshwater table. Vegetation–soil interactions (e.g., nitrogen fixation by legumes) were important in secondary dune areas, with topographic effects less significant. Vegetation, soil, and geomorphic factors are closely connected in a causal chain across a whole dune area. Our model thus addresses the importance of integrating foredune, dune slack, and secondary dune into one continuous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson MG, Burt TP (1978) The role of topography in controlling throughflow generation. Earth Surf Processes 3:331–344. doi:10.1002/esp.3290030402

    Article  Google Scholar 

  • Avis AM, Lubke RA (1996) Dynamics and succession of coastal dune vegetation in the Eastern Cape, South Africa. Landsc Urban Plan 34:237–254. doi:10.1016/0169-2046(95)00217-0

    Article  Google Scholar 

  • Bailey TC, Gatrell AC (1995) Interactive spatial data analysis. Longman Scientific & Technical, Essex, UK

    Google Scholar 

  • Barbour MG, de Jong TM (1977) Response of West coast beach taxa to salt spray, sea water inundation and soil salinity. B Torrey Bot Club 104:29–34. doi:10.2307/2484662

    Article  Google Scholar 

  • Berendse F, Lammerts EJ, Olff H (1998) Soil organic matter accumulation and its implications for nitrogen mineralization and plant species composition during succession in coastal dune slacks. Plant Ecol 137:71–78. doi:10.1023/A:1008051931963

    Article  Google Scholar 

  • Beven K, Germann P (1982) Macropores and water flow in soils. Water Resour Res 18:1311–1325. doi:10.1029/WR018i005p01311

    Article  Google Scholar 

  • Boring LR, Swank WT (1984) Symbiotic nitrogen fixation in regenerating black locust (Robinia pseudo-accacia L.) stands. For Sci 30:528–537

    Google Scholar 

  • Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New York

    Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Burrough PA (1993) Soil variability: a late 20th century view. Soils Fert 56:529–562

    Google Scholar 

  • Carter RWG (1988) Coastal environments: an introduction to the physical, ecological, and cultural systems of coastlines. Academic Press, New York

    Google Scholar 

  • Chen ZS, Hsieh CF, Jiang FY, Hsieh TH, Sun IF (1997) Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol 132:229–241. doi:10.1023/A:1009762704553

    Article  Google Scholar 

  • Conrad O (2002) DiGeM Terrain Analysis Software (http://downloads.sourceforge.net/saga-gis/digem_2.0_bin.zip)

  • de Vries W, Klijn JA, Kros J (1994) Simulation of the long-term impact of atmospheric deposition on dune ecosystems in the Netherlands. J Appl Ecol 31:59–73. doi:10.2307/2404599

    Article  Google Scholar 

  • Dixon RK, Meldahl RS, Ruark GA, Warren WG (eds) (1990) Process modeling of forest growth responses to environmental stress. Timber Press, Portland, Oregon

    Google Scholar 

  • Ehrenfeld JG (1990) Dynamics and processes of barrier island vegetation. Rev Aquat Sci 2:437–480

    Google Scholar 

  • Environmental Systems Research Institute (2000) ESRI GIS and mapping software (http://www.esri.com)

  • Franklin J (1995) Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Prog Phys Geog 19:474–499. doi:10.1177/030913339501900403

    Article  Google Scholar 

  • Freeman GT (1991) Calculating catchment area with divergent flow based on regular grid. Comput Geosci 17:413–422. doi:10.1016/0098-3004(91)90048-I

    Article  Google Scholar 

  • Gerrard J (1992) Soil geomorphology: an integration of pedology and geomorphology. Chapman & Hall, New York Golden Software Inc (1999) Surfer® 7: user’s guide. Golden Software Inc. CO

    Google Scholar 

  • Grootjans AP, Ernst WHO, Stuyfzand PJ (1998) European dune slacks: strong interactions of biology, pedogenesis, and hydrology. Trends Ecol Evol 13:96–100. doi:10.1016/S0169-5347(97)01231-7

    Article  Google Scholar 

  • Hayden BP, Santos MCFV, Shao G, Kochel RC (1995) Geomorphological controls on coastal vegetation at the Virginia Coast Reserve. Geomorphology 13:283–300. doi:10.1016/0169-555X(95)00032-Z

    Article  Google Scholar 

  • Hesp PA (1990) Ecological processes and plant adaptations on coastal dunes. J Arid Environ 21:165–191

    Google Scholar 

  • Hopkins WG, Hüner NPA (2004) Introduction to plant physiology, 3rd edn. JohnWiley & Sons, New Jersey

    Google Scholar 

  • Hundt R (1985) Phytosociological and ecological aspects of the dunes on the Isle of Rügen, Baltic Sea. Vegetation 61:97–103. doi:10.1007/BF00039814

    Article  Google Scholar 

  • Johnston K, ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst. ESRI, California

    Google Scholar 

  • Jones CG, Lawton JH, Schachak M (1984) Organisms as ecosystem engineers. Oikos 69:373–386. doi:10.2307/3545850

    Article  Google Scholar 

  • Jordan MJ, Nadelhoffer KJ, Fry B (1997) Nitrogen cycling in forest and grass ecosystems irrigated with 15N-enriched wastewater. Ecol Appl 7:864–881

    Google Scholar 

  • Kaluzny SP, Vega SC, Cardoso TP, Shelly A (1998) S+ SpatialStats: user’s manual for Windows and UNIX. Springer, New York

    Google Scholar 

  • Kellman M, Roulet N (1990) Nutrient flux and retention in a tropical sand dune succession. J Ecol 78:664–676. doi:10.2307/2260891

    Article  Google Scholar 

  • Kim D (2004) Spatial distribution of plant species in relation to landform-soil-distance factors in a coastal dunefield, South Korea. Unpublished Master’s thesis, Seoul National University, South Korea

  • Kim D, Yu KB, Park SJ (2008) Identification and visualization of complex spatial pattern of coastal dune soil properties using GIS-based terrain analysis and geostatistics. J Coastal Res 24(sp3):50–60

    Article  CAS  Google Scholar 

  • Lee WT (1996) Standard illustrations of Korean plants. Academy Publishing Co. Seoul

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Maestre FT, Bradford MA, Reynolds JF (2006) Soil heterogeneity and community composition jointly influence grasslands biomass. J Veg Sci 17:261–270. doi:10.1658/1100-9233(2006)017[0261:SHACCJ]2.0.CO;2

    Google Scholar 

  • Malanson GP (1999) Considering complexity. Ann Assoc Am Geogr 89:746–753. doi:10.1111/0004-5608.00174

    Article  Google Scholar 

  • Maun MA (1998) Adaptations of plants to burial in coastal sand dunes. Can J Bot 76:713–738. doi:10.1139/cjb-76-5-713

    Article  Google Scholar 

  • Maun MA, Perumal J (1999) Zonation of vegetation on lacustrine coastal dunes: effects of burial by sand. Ecol Lett 2:14–18. doi:10.1046/j.1461-0248.1999.21048.x

    Article  Google Scholar 

  • Maynard DG, Kalra YP (1993) Nitrate and exchangeable ammonium nitrogen. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, Florida, pp 25–26

    Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorpological, and biological applications. Hydrol Process 5:3–30. doi:10.1002/hyp.3360050103

    Article  Google Scholar 

  • Moreno-Casasola P (1986) Sand movement as a factor in the distribution of plant communities in a coastal dune system. Vegetatio 65:67–76. doi:10.1007/BF00044876

    Article  Google Scholar 

  • Moreno-Casasola P (1988) Patterns of plant species distribution on coastal dunes along the Gulf of Mexico. J Biogeogr 15:787–806. doi:10.2307/2845340

    Article  Google Scholar 

  • Moreno-Casasola P, Espejel I (1986) Classification and ordination of coastal sand dune vegetation along the Gulf and Caribbean Sea of Mexico. Vegetatio 66:147–182. doi:10.1007/BF00039908

    Article  Google Scholar 

  • Norusis MJ, SPSS Inc (1993) SPSS: SPSS for Windows Base System User’s Guide. SPSS Inc. Chicago

    Google Scholar 

  • Odeh IOA, Chittleborough DJ, McBratney AB (1991) Elucidation of soil–landform interrelationships by canonical ordination analysis. Geoderma 49:1–32. doi:10.1016/0016-7061(91)90089-C

    Article  Google Scholar 

  • Oosting HJ, Billings WD (1942) Factors effecting vegetational zonation on coastal dunes. Ecology 23:131–142. doi:10.2307/1931081

    Article  CAS  Google Scholar 

  • Park SJ, Burt TP (2002) Identification and characterization of pedogeomorphological processes on a hillslope. Soil Sci Soc Am J 66:1897–1910

    CAS  Google Scholar 

  • Parker KC, Bendix J (1996) Landscape-scale geomorphic influences on vegetation patterns in four environments. Phys Geogr 17:113–141

    Google Scholar 

  • Parysow P, Gertner G (1997) Virtual experimentation: conceptual models and hypothesis testing of ecological scenarios. Ecol Modell 98:59–71. doi:10.1016/S0304-3800(96)01937-0

    Article  Google Scholar 

  • Peréz FL (1995) Plant-induced spatial patterns of surface soil properties near caulescent Andean rosettes. Geoderma 68:101–121. doi:10.1016/0016-7061(95)00028-M

    Article  Google Scholar 

  • Ranwell DS (1972) Ecology of salt marshes and sand dunes. Chapman & Hall, London

    Google Scholar 

  • Rhodes JD (1982) Soluble salts. In: Page AL (ed) Methods of soil analysis, part 2, chemical and microbiological properties, Agronomy No. 9, 2nd edn. American Society of Agronomy, Madison, Wisconsin, pp 167–179

    Google Scholar 

  • Salisbury EJ (1925) Note on the edaphic succession in some dune soils with special reference to the time factor. J Ecol 13:322–328. doi:10.2307/2255290

    Article  Google Scholar 

  • Salisbury EJ (1952) Downs and dunes: their plant life and its environment. Bell, London

    Google Scholar 

  • Schlesinger WH, Pilmanis AM (1998) Plant–soil interactions in deserts. Biogeochemistry 42:169–187. doi:10.1023/A:1005939924434

    Article  Google Scholar 

  • Simard RR (1993) Ammonium acetate-extractable elements. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, Florida, pp 39–42

    Google Scholar 

  • Stallins JA (2001) Soil and vegetation patterns in barrier-island dune environments. Phys Geogr 22:79–98

    Google Scholar 

  • Stallins JA (2005) Stability domains in barrier island dune systems. Ecol Complex 2:410–430. doi:10.1016/j.ecocom.2005.04.011

    Article  Google Scholar 

  • Stallins JA, Parker AJ (2003) The influence of complex systems interactions on barrier island dune vegetation pattern and process. Ann Assoc Am Geogr 93:13–29. doi:10.1111/1467-8306.93102

    Article  Google Scholar 

  • Swanson FJ, Kratz TK, Caine N, Woodmansee RG (1988) Landform effects on ecosystem patterns and processes. Bioscience 38:92–98. doi:10.2307/1310614

    Article  Google Scholar 

  • Sykes MT, Wilson JB (1987) The vegetation of a New Zealand dune slack. Vegetatio 71:133–139. doi:10.1007/BF00048507

    Article  Google Scholar 

  • Sykes MT, Wilson JB (1990) Dark tolerance in plants of dunes. Funct Ecol 4:799–805. doi:10.2307/2389446

    Article  Google Scholar 

  • Sykes MT, Wilson JB (1991) Vegetation of a coastal sand dune system in southern New Zealand. J Veg Sci 2:531–538. doi:10.2307/3236035

    Article  Google Scholar 

  • Sýkora KV, van den Bogert JCJM, Berendse F (2004) Changes in soil and vegetation during dune slack succession. J Veg Sci 15:209–218. doi:10.1658/1100-9233(2004)015[0209:CISAVD]2.0.CO;2

    Article  Google Scholar 

  • ter Braak CJF (1995) Ordination. In: Jongman RHG, ter Braak CJF, van Tongeren OFR (eds) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge, pp 91–173

    Google Scholar 

  • ter Braak CJF, Šmilauer P (1998) CANOCO reference manual and user’s guide to CANOCO for Windows: software for canonical community ordination (ver 4). Microcomputer Power, Ithaca

    Google Scholar 

  • Thompson JA, Bell JC, Butler CA (2001) Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil–landscape modeling. Geoderma 100:67–89. doi:10.1016/S0016-7061(00)00081-1

    Article  Google Scholar 

  • Topp GC (1993) Soil water content. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, FL, pp 541–544

    Google Scholar 

  • van Breemen N, Finzi AC (1998) Plant–soil interactions: ecological aspects and evolutionary implications. Biogeochemistry 42:1–19. doi:10.1023/A:1005962124317

    Article  Google Scholar 

  • van der Putten WH, van Dijk C, Peters BAM (1993) Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:53–56. doi:10.1038/362053a0

    Article  Google Scholar 

  • van der Valk AG (1974) Mineral cycling in coastal foredune plant communities in Cape Hatteras National Seashore. Ecology 55:1349–1358. doi:10.2307/1935462

    Article  Google Scholar 

  • Webb LJ (1969) Edaphic differentiation of some forest types in eastern. Aust J Ecol 57:817–830

    Google Scholar 

  • Webster R, Oliver MA (1990) Statistical methods in soil and landscape resource survey. Oxford University Press, Oxford

    Google Scholar 

  • Wilson JB, Sykes MT (1999) Is zonation on coastal sand dunes determined primarily by sand burial or by salt spray? A test in New Zealand dunes. Ecol Lett 2:233–236. doi:10.1046/j.1461-0248.1999.00084.x

    Article  Google Scholar 

  • Wilson JP, Gallant JC (2000) Digital terrain analysis. In: Wilson JP, Gallant JC (eds) Terrain analysis: principles and application. John Wiley & Sons, New York, pp 1–27

    Google Scholar 

  • Yang CS, Kao SP, Lee FB, Hung PS (2004) Twelve different interpolation methods: a case study of Surfer 8.0. In: Proceedings of ISPRS Congress 20: 778–785

  • Yu KB, Rhew HS, Kim SH (2004) Aeolian sand as a nutrient carrier into the coastal dunefield. Paper presented at the 30th congress of international geographical union, Glasgow, Scotland, 15–20 August 2004

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surf Proc Land 12:47–56. doi:10.1002/esp.3290120107

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate Dr. David Cairns’s insightful comments on an earlier version of this manuscript. DK hopes to express his deep thanks to Dr. SooJin Park for his help with sampling design and statistical analyses. Data collection in the field was accomplished thanks to the unending support of Dr. Sung Hwan Kim, Young Ho Shin, and Kyoung Hwa Kwon. A special thanks must be given to reviewers whose comments were greatly helpful for improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D., Yu, K.B. A conceptual model of coastal dune ecology synthesizing spatial gradients of vegetation, soil, and geomorphology. Plant Ecol 202, 135–148 (2009). https://doi.org/10.1007/s11258-008-9456-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-008-9456-4

Keywords

Navigation