Skip to main content

Advertisement

Log in

Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Areas of 2,800–3,000 m a.s.l. represent the alpine-nival ecotone in the Alps. This transition zone connecting the closed swards of the alpine belt and the scattered vegetation of the nival belt may show particularly strong climate warming driven fluctuations in plant species richness compared to the nival belt. To test this hypothesis, 12 summits within this range were investigated in the canton of Grisons, Switzerland in 2004. Complete lists of vascular plant species consisting of 5–70 species were collected on each summit and the elevation of the uppermost occurrence of each species was recorded. These data were compared to historical records over 120 years in age. Within this time, vascular plant species richness increased by 11% per decade on summits in the alpine-nival ecotone. Despite this considerable change, a comparison with nival summits did not support the hypothesis that species richness increase at the alpine-nival ecotone is higher than in the nival belt. A general trend of upward migration in the range of several metres per decade could be observed. Anemochorous species were more often found to be migrating than zoochorous or autochorous species and migration was higher on calcareous than on siliceous bedrock. A comparison between the summits with the adjacent slopes in our study revealed that changes in species number could be used as an indicator for climate-induced changes—if at all—only for the narrow summit areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bader S, Bantle H (2004) Das Schweizer Klima im Trend. Temperatur- und Niederschlagsentwicklung 1864–2001. Veröff MeteoSchweiz 68:45ff

    Google Scholar 

  • Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80

    Article  Google Scholar 

  • Braun-Blanquet J (1913) Die Vegetationsverhältnisse der Schneestufe in den Rätisch-Lepontischen Alpen. Neue Denkschr Schweiz nat forsch Ges 48:1–348

    Google Scholar 

  • Braun-Blanquet J (1958) Über die obersten Grenzen pflanzlichen Lebens im Gipfelbereich des schweizerischen Nationalparks. Kommission Schweiz nat forsch Ges zur wiss Erforsch des Nationalparks 6:119–142

    Google Scholar 

  • Camenisch M (2002) Veränderungen der Gipfelflora im Bereich des Schweizerischen Nationalparks: Ein Vergleich über die letzten 80 Jahre. Jahresber nat forsch Ges Graubünden 111:27–37

    Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308

    Article  Google Scholar 

  • di Castri F, Hansen AJ, Holland MM (1988) A new look at ecotones: emerging international projects on landscape boundaries. Biol Int 17:1–163

    Google Scholar 

  • Dubey B, Yadav R (2006) Migration of plant species in response to recent climate change in the western Himalaya, India. In: Price MF (ed) Global change in mountain regions. Sapiens, Duncow, UK

    Google Scholar 

  • Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in western Himalaya, India. Curr Sci 85:1135–1136

    Google Scholar 

  • Ellenberg H, Weber HE, Dull R, Wirth V, Werner W, Paulissen D (1991) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:1–248

    Google Scholar 

  • Fischer M, Adler W, Oswald K (1994) Exkursionsflora von Österreich. Ulmer, Stuttgart

    Google Scholar 

  • Gigon A, Rorison IH (1972) The response of some ecologically distinct plant species to nitrate- and to ammonium-nitrogen. J Ecol 60:93–102

    Article  CAS  Google Scholar 

  • Gottfried M, Pauli H, Grabherr G (1998) Prediction of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arctic Alpine Res 30:207–221

    Article  Google Scholar 

  • Grabherr G (1997) The high-mountain ecosystems of the Alps. In: Wielgolaski FE (ed) Polar and alpine tundra ecosystems of the world 3. Elsevier, Amsterdam, pp 97–121

    Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FSI, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological Studies 113. Springer, Heidelberg, pp 167–181

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (2001) Aspects of global change in the Alps and in the high arctic region. Long-term monitoring of mountain peaks in the Alps. In: Burga CA, Kratochwil A (eds) Biomonitoring: General and applied aspects on regional and global scales. Kluwer Academic Publishers, Dordrecht, pp 153–177

    Google Scholar 

  • Heer O (1885) Über die nivale Flora der Schweiz. Neue Denksch Allg Schweiz Ges Gesamt Nat wiss 29:1–114

    Google Scholar 

  • Hofer HR (1985) Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985. Ber Geobot Inst Eidgenöss Tech Hochsch Stift Rübel 58:39–54

    Google Scholar 

  • IPCC (2007) Climate change 2007: working Group 1, fourth assessment Report. WMO, UNEP

  • Kammer PA, Mohl A (2002) Factors controlling species richness in alpine plant communities: an assessment of the importance of stress and disturbance. Arctic Antarct Alpine Res 34:398–407

    Article  Google Scholar 

  • Keller F, Kienast F, Beniston M (2000) Evidence of response of vegetation to environmental change on high-elevation sites in the Swiss Alps. Reg Environ Change 1:70–77

    Article  Google Scholar 

  • Klanderud K, Birks HJB (2003) Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13:1–6

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  • Kullman L (2006) Increase in plant species richness on alpine summits in the Swedish Scandes—impacts of recent climate change. In: Price MF (ed) Global change in mountain regions. Sapiens, Duncow, UK

    Google Scholar 

  • Lauber K, Wagner G (1996) Flora Helvetica. Paul Haupt, Bern

    Google Scholar 

  • MathSoft (1999) S-Plus 2000 Math Soft, Data analysis products division. Seattle, Washington, USA

    Google Scholar 

  • Müller-Schneider P (1986) Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröff Geobot Inst Eidgenöss Tech Hochsch Zürich 85:1–263

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1996) Effects of climate change on mountain ecosystems - upward shifting of alpine plants. World Resource Rev 8:382–390

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (1999) Vascular plant distribution patterns at the low-temperature limits of plant life—the alpine-nival ecotone of Mount Schrankogel (Tyrol, Austria). Phytocoenologia 29:297–325

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2001) High summits of the Alps in a changing climate. The oldest observation series on high mountain plant diversity in Europe. In: Walther G-R, Burga CA, Edwards PJ (eds) Fingerprints of climate change—Adapted behaviour and shifting species ranges. Kluwer Academic Publisher, New York, pp 139–149

    Google Scholar 

  • Peteet D (2000) Sensitivity and rapidity of vegetational response to abrupt climate change. PNAS 97:1359–1361

    Article  PubMed  CAS  Google Scholar 

  • Rothmaler W (2002) Exkursionsflora von Deutschland. Spektrum, Heidelberg

    Google Scholar 

  • Rübel E (1912) Pflanzengeographische Monographie des Berninagebietes. Engelmann, Leipzig

    Google Scholar 

  • Sakai A, Larcher W (1987) Frost survival in plants: responses and adaptation to freeing stress. Ecological studies 62. Springer, Berlin

    Google Scholar 

  • Schibler W (1898) Über die nivale Flora der Landschaft Davos Jahrb Schweiz Alpenclubs 33

  • Theodose TA, Bowman WD (1997) The influence of interspecific competition on the distribution of an alpine graminoid: evidence for the importance of plant competition in an extreme environment. Oikos 79:101–114

    Article  CAS  Google Scholar 

  • Theurillat J-P, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    Article  CAS  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250

    Article  PubMed  CAS  Google Scholar 

  • van der Pijl L (1972) Principles of dispersal in higher plants. Springer, Berlin

    Google Scholar 

  • Virtanen R, Dirnböck T, Dullinger S, Grabherr G, Pauli H, Staudinger M, Villar L (2003) Plant diversity of European mountains- –a regional synthesis. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe: a Europe-wide assessment of biological richness and change Ecological Studies 167. Springer, Heidelberg, pp 149–172

    Google Scholar 

  • Walther GR (2003) Plants in a warmer world. Perspect Plant Ecol Evol Systemat 6:169–185

    Article  Google Scholar 

  • Walther GR, Beissner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • Walther GR, Burga CA, Edwards PJ (eds) (2001) Fingerprints of climate change—adapted behaviour and shifting species ranges. Kluwer Academic Publishers, New York

    Google Scholar 

  • Walther GR, Pott R, Beissner S (2004) Climate change and high mountain vegetation. In: Keplin B, Broll G, Mattes H (eds) Mountain and northern ecosystems: Arbeiten aus dem Institut für Landschaftsökologie. Westfälische Wilhelms-Universität. Münster

Download references

Acknowledgements

We would like to thank Helfrid Rossiter, Richard Brauer and Michael Hofmeier for their assistance in the field. Data about diaspore length were kindly provided by Siegrun Ertl. We thank Manuela Winkler, Siegrun Ertl and Matthias Seeger for useful comments on the early versions of this manuscript. The inputs and suggestions of the two anonymous reviewers greatly helped to improve this manuscipt. The work was funded by the Forschungskommission des Schweizerischen Nationalparks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Holzinger.

 

 

Appendix A Species occurrence on 12 mountains in Grisons, Switzerland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holzinger, B., Hülber, K., Camenisch, M. et al. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195, 179–196 (2008). https://doi.org/10.1007/s11258-007-9314-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-007-9314-9

Keywords

Navigation