Skip to main content

Advertisement

Log in

Position on slope, disturbance, and tree species coexistence in a Seasonal Semideciduous Forest in SE Brazil

  • Original paper
  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

We investigated the influence of position on a slope (plot relative elevation) and vegetation disturbance (the tallest tree height per plot) on community composition and diversity in a SE Brazilian Seasonal Semideciduous Forest (46°55′ W, 22°50′ S). Trees with dbh  ≥5 cm were sampled in one hundred 10  ×  10 m plots randomly placed in a 6.5-ha stand. Through partial Mantel test, floristic dissimilarities among plots (Jaccard index computed with species abundance in each plot) were correlated with environmental distances among plots (Euclidian distance index computed with relative elevation and the tallest tree height values in each plot). Relative elevation and the tallest tree per plot height were individually correlated with floristic gradients expressed by PCA axes scores using Pearson’s correlation coefficient. Through resampling, we compared diversity (richness, Berger-Parker D and Shannon H′) among plots in the drier (up) and moister (low) ends of the slope. Floristic dissimilarities were significantly correlated with environmental distances even after geographic distances among plots have been partialled out (r m = 0.1274, p < 0.001). The first two PCA axes accounted for 22% of the total variance. After Bonferroni and Dutilleul’s corrections, axis 1 showed a marginally significant correlation with plot relative elevation (r = − 0.4097, p = 0.0309), and axis 2 was significantly correlated with the tallest tree height per plot (r = 0.2953, p = 0.0106). Position on the slope and vegetation disturbance were reliable predictors of community composition, thus suggesting the operation of niche assembly organizing processes. Richness and diversity (H′) decreased and dominance (D) increased with elevation on the slope. Dominance increase from D (300) = 0.11 (confidence interval = 0.091–0.131) to D (300) = 0.19 (CI = 0.165–0.210) surpassed the expected dominance increase based on the reduction of richness alone: D (300)  =  0.13 (CI = 0.110–0.140), thus highlighting the niche partitioning assembly of the community, especially among abundant species. Given the great amount of floristic variability remaining unexplained, stochastic processes, such as those related to dispersal limitation, may also have influence on the community composition. Therefore, both niche assembly and chance events can operate even on a fine local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiba S, Kitayama K, Takyu M (2004) Habitat associations with topography and canopy structure of tree species in a montane forest on Mount Kinabalu, Borneo. Plant Ecol 174:147–161

    Article  Google Scholar 

  • Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annl Rev Ecol Syst 11:287–310

    Article  Google Scholar 

  • Berger WH, Parker FL (1970) Diversity of planktonic Foraminifera in deep sea sediments. Science 168:1345–1347

    Article  PubMed  Google Scholar 

  • Boubli JP (2002) Lowland floristic assessment of Pico da Neblina National Park, Brazil. Plant Ecol 160:149–167

    Article  Google Scholar 

  • Budowski G (1965) Distribution of tropical American forest species in the light of successional processes. Turrialba 15:40–42

    Google Scholar 

  • Cannon CH, Leighton M (2004) Tree species distributions across five habitats in a Bornean rain forest. J Veg Sci 15:257–266

    Article  Google Scholar 

  • Cardoso E, Schiavini I (2002) Relationship between tree species distribution and topography in a forest gradient in the Panga Ecological Station (Uberlândia, MG). Brazil J Bot 25:277–289

    Google Scholar 

  • Chave J (2004) Neutral theory and community ecology. Ecol Letts 7:241–253

    Article  Google Scholar 

  • Cielo-Filho R (2001) Estrutura de abundância de um trecho da Floresta Estacional Semidecídua no município de Campinas, estado de São Paulo: Mata Ribeirão Cachoeira. MSc Thesis, Campinas State University, Campinas

  • Cielo-Filho R, Martins FR, Gneri MA (2002) Fitting abundance distribution models in tropical arboreal communities of SE Brazil. Comm Ecol 3:169–180

    Article  Google Scholar 

  • Clifford P, Richardson S, Hémon D (1989) Assessing the significance of the correlation between two spatial processes. Biometrics 45:123–134

    Article  PubMed  CAS  Google Scholar 

  • Condit R, Pitman N, Leigh EG, Chave J, Terborgh J, Foster RB, Núnez P, Aguilar S, Valencia GV, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in Tropical forest trees. Science 295:666–669

    Article  PubMed  CAS  Google Scholar 

  • Connell JH (1989) Some processes affecting the species composition in forest gaps. Ecology 70:560–562

    Article  Google Scholar 

  • Crawley MJ (1997) The structure of plant communities. In: Crawley MJ (ed) Plant ecology. Blackwell Science, London, pp 475–531

    Google Scholar 

  • Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species. J Ecol 90:714–727

    Article  Google Scholar 

  • Dutilleul P (1993) Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49:305–314

    Article  Google Scholar 

  • EMBRAPA (1999) Sistema brasileiro de classificação de solos. Empresa Brasileira de Pesquisa Agropecuária—Centro Nacional de Pesquisa de Solos, Brasília

  • Enoki T, Abe A (2004) Saplings distribution in relation to topography and canopy openness in an evergreen broad-leaved forest. Plant Ecol 173:283–291

    Article  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Fonseca MG, Martini AMZ, Santos FAM (2004) Spatial structure of Aspidosperma polyneuron in two semi-deciduous forests in Southeast Brazil. J Veg Sci 15:41–48

    Article  Google Scholar 

  • Frontier S (1976) Étude de la decroissance des valeurs propres dans une analyse em composantes principales: comparison avee le modèle de baton brisé. J Exp Marine Biol Ecol 25:67–75

    Article  Google Scholar 

  • Furley PA (1976) Soil-slope-plant relationships in the northern Maya mountains, Belize, Central America. J Biogeogr 3:303–319

    Article  Google Scholar 

  • Gotelli NJ, Entsminger GL (2000) EcoSim: Null models software for ecology. URL: http://www.uvm.edu/∼biology/Facult/Gotelli/Gotelli.html

  • Greig-Smith P (1983) Quantitative plant ecology, 3rd ed. Blackwell, Oxford

    Google Scholar 

  • Grime JP (1983) Plant strategies and vegetation processes. John Wiley and Sons, New York

    Google Scholar 

  • Hubbell SP, Foster RB (1986) Biology, chance, and history of tropical rain forest tree communities. In: Diamond J, Case TJ (eds) Community ecology. Harper and Row Publishers, New York, pp 314–329

    Google Scholar 

  • Hubbell SP (1997) A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16:S9–S21

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Hubbell SP, Foster RB, O’brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, Loo De Lao S (1999) Light-Gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554–557

    Article  PubMed  CAS  Google Scholar 

  • Hurtt GC, Pacala SW (1995) The consequences of recruitment limitation: reconciling chance, history and competitive differences among plants. J Theoret Biol 176:1–12

    Article  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415–457

    Google Scholar 

  • IBGE (1992) Manual técnico da vegetação brasileira. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Instituto Geológico (1993) Subsídios do meio físico e geológico ao planejamento do município de Campinas. Secretaria de Planejamento e Meio Ambiente, Prefeitura Municipal de Campinas, Campinas

    Google Scholar 

  • Jackson DA (1993) Stopping rules in Principal Components Analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214

    Article  Google Scholar 

  • Konopen P, Nygren P, Sabatier D, Rousteau A, Saur E (2004) Tree species diversity and forest structure in relation to microtopography in a tropical freshwater swamp forest in French Guiana. Plant Ecol 173:17–32

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science BV, New York

    Google Scholar 

  • Leigh EG Jr, Davidar P, Dick CW, Puyravaud J-P, Terborgh J, Steege H ter, Wright SJ (2004) Why do some Tropical Forests have so many species of trees? Biotropica 36:447–473

    Google Scholar 

  • Leigh EG Jr (1999) Tropical forest ecology: a view from Barro Colorado Island. Oxford University Press, New York

    Google Scholar 

  • Lescure PJ, Boulet R (1985) Relationships between soil and vegetation in a tropical rain forest in French Guiana. Biotropica 17:155–164

    Article  Google Scholar 

  • Levin SA, Nathan R, Muller-Landau HC, Chave J (2003) The ecology and evolution of dispersal: a theoretical perspective. Annl Rev Ecol Evol Syst 34:575–604

    Article  Google Scholar 

  • Lorenzi H (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas do Brasil. Editora Plantarum, Nova Odessa

    Google Scholar 

  • Martins FR (1993) Estrutura de uma floresta mesófila. Editora da Universidade Estadual de Campinas, Campinas

    Google Scholar 

  • Martins SV, Silva NRS, Souza AP de, Meira-Neto JAA (2003) Distribuição de espécies arbóreas em um gradiente topográfico de floresta estacional semidecídua em Viçosa, MG. Scientia Forestalis 64:172–181

    Google Scholar 

  • May RM (1975) Patterns of species abundance and diversity. In: Cody ML, Diamond JM (eds), Ecology and evolution of communities. Belknap Press of the Harvard University, Cambridge, pp 81–120

    Google Scholar 

  • Obiri JAF, Lawes MJ (2004) Chance versus determinism in canopy gap regeneration in coastal scarp forest in South Africa. J Veg Sci 15:538–547

    Article  Google Scholar 

  • Oldeman RAA, (1983) Tropical rain forest architecture, silvigenesis and diversity. In: Whitmore TC, Chadwick AC (eds), Tropical rain forest: ecology and management no 2. Blackwell Scientific Publications, Oxford, pp 139–150

    Google Scholar 

  • Oliveira-Filho AT (1994) Effects of soil and topography on the distribution of tree species in a tropical riverine forest of southeastern Brazil. J Trop Ecol 10:483–508

    Article  Google Scholar 

  • Oliveira-Filho AT, Curi N, Vilela EA, Carvalho DA (1997) Tree species distribution along soil catenas in a riverside semideciduous forest in southeastern Brazil. Flora 192:47–64

    Article  Google Scholar 

  • Oliveira-Filho AT, Curi N, Vilela EA, Carvalho DA (1998) Effects of canopy gaps, topography, and soils on the distribution of woody species in a Central Brazilian deciduous dry forest. Biotropica 30:362–375

    Article  Google Scholar 

  • Ortolani AA, Camargo MBP, Pedro-Junior MJ (1995) Normais climatológicas dos postos meteorológicos do Instituto Agronômico: 1. Centro Experimental de Campinas. Instituto Agronômico de Campinas, Campinas

  • Palmer MA, Ambrose RF, Poff NL (1997) Ecological theory and community restoration ecology. Rest Ecol 5:291–300

    Article  Google Scholar 

  • Pearson TRH, Burslem DFRP, Goeriz RE, Dalling JW (2003) Regeneration niche partitioning in neotropical pioneers: effects of gap size, seasonal drought and herbivory on growth and survival. Oecologia 137:456–465

    Article  PubMed  CAS  Google Scholar 

  • Poorter L, Arets EJMM (2003) Light environment and tree strategies in a Bolivian tropical moist forest: an evaluation of the light partitioning hypothesis. Plant Ecol 166:295–306

    Article  Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rodrigues RR, Morellato LPC, Joly CA, Leitão Filho HF (1989) Estudo florístico e fitossociológico de um gradiente altitudinal de mata estacional mesófila semidecídua, na Serra do Japi, Jundiaí, SP. Brazil J Bot 12:71–84

    Google Scholar 

  • Rosenberg MS (2001) PASSAGE. Pattern analysis, spatial statistics, and geographic exegesis Version 1.1. Department of Biology, Arizona State University, Tempe, AZ

    Google Scholar 

  • Sabatier D, Grimald M, Prévost MF, Guillaume J, Godron M, Dosso M, Curmi P (1997) The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecol 131:81–108

    Article  Google Scholar 

  • Santin DA (1999) A Vegetação remanescente do município de Campinas (SP): mapeamento, caracterização fisionômica e florística, visando a conservação. PhD Thesis, Campinas State University, Campinas

  • Santos K dos, Kinoshita LS (2003) Flora arbustivo-arbórea do fragmento de floresta estacional semidecidual do Ribeirão Cachoeira, município de Campinas, SP. Acta Botanica Brasilica 3:325–341

    Google Scholar 

  • Shaffer ML (1981) Minimum population sizes for species conservation. BioScience 31:131–134

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Google Scholar 

  • Shepherd GJ (1996) Fitopac 1: manual do usuário. Departamento de Botânica/UNICAMP, Campinas

    Google Scholar 

  • Sollins P (1998) Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79:23–30

    Article  Google Scholar 

  • Svenning JC, Skov F (2002) Mesoscale distribution of understorey plants in temperate forest (Kalo, Denmark): the importance of environment and dispersal. Plant Ecol 160:169–185

    Article  Google Scholar 

  • Swaine MD, Whitmore TC (1988) On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81–86

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Ricklefs RE, Schluter D (eds), Species diversity in ecological communities: historical and geographical perspectives. The University of Chicago Press, Chicago, pp 13–25

    Google Scholar 

  • Valencia R, Foster RB, Villa G, Condit R, Svenning J-C, Hernándes C, Romoleroux K, Losos E, Magard E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229

    Article  Google Scholar 

  • van den Berg E, Oliveira-Filho AT (1999) Spatial partitioning among tree species within na área of tropical montane gallery forest in south-eastern Brazil. Flora 194:249–266

    Google Scholar 

  • van Hulst R (1992) From population dynamics to community dynamics: modelling succession as a species replacement process. In: Glenn-Lewin DC, Peet RK, Veblen TT (eds), Plant succession: theory and prediction. Chapman and Hall, London, pp 188–214

    Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Article  Google Scholar 

  • Whitmore TC (1982) On pattern and process in forests. In: Newman EI (ed), The plant community as a working mechanism. Blackwell Scientific Publications, Oxford, pp 45–59

    Google Scholar 

  • Whitmore TC (1989) Canopy gaps and two major groups of forest trees. Ecology 70:536–538

    Article  Google Scholar 

  • Wilson JB (1999) Assembly rules in plant communities. In: Weiher E, Keddy P (eds), Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge, pp 131–164

    Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 2nd ed. Prentice Hall, New Jearsey

    Google Scholar 

Download references

Acknowledgments

We thank to the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq for the grants for the first author; and to Eunice Reis Batista and Fabiano Chiste for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Roberto Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cielo-Filho, R., Gneri, M.A. & Martins, F.R. Position on slope, disturbance, and tree species coexistence in a Seasonal Semideciduous Forest in SE Brazil. Plant Ecol 190, 189–203 (2007). https://doi.org/10.1007/s11258-006-9200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-006-9200-x

Keywords

Navigation