Plant Ecology

, Volume 189, Issue 1, pp 31–48 | Cite as

Establishment and persistence of target species in newly created calcareous grasslands on former arable fields

Original Paper


The effects of different restoration measures and management variants on the vegetation development of newly created calcareous grasslands were studied in southern Germany from 1993 to 2002. In 1993, fresh seed-containing hay from a nature reserve with ancient calcareous grasslands was transferred onto ex-arable fields with and without topsoil removal. Nine years after start of the restoration, the standing crop was lower and the cover of bare soil was higher on topsoil-removal sites than on sites without soil removal. Topsoil removal had a positive effect on the proportion of target species (class Festuco-Brometea), because the number and cover of productive meadow species (class Molinio-Arrhenatheretea) were reduced. Persistence of hay-transfer species and the number of newly colonizing target species were highest on topsoil-removal sites. On plots with and without soil removal, species richness and the number of target species increased quickly after hay transfer and were always higher on hay-transfer plots than on plots that had not received hay in 1993. In 2002, differences induced by hay transfer were still much more pronounced than differences between management regimes. Management by mowing, however, led to higher species richness, a greater number of target species and a lower number of ruderals in comparison to no management on restoration fields without soil removal. A detrended correspondence analysis (DCA) indicated that vegetation composition of the hay-transfer plots of the restoration fields still differed from the vegetation of ancient grasslands in the nature reserve. Vegetation of an ex-arable field in the nature reserve (last ploughed in 1959) showed an intermediate successional stage. In general our results indicate that the transfer of autochthonous hay is an efficient method for the restoration of species-rich vegetation, which allows not only quick establishment but also long-term persistence of target species.


Ancient grassland Dry grassland Restoration Soil removal Species introduction Target species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlmer W, Scheuerer M (2003) Rote Liste gefährdeter Gefäßpflanzen Bayerns mit regionalisierter Florenliste. Schriftenr Bayerischen Landesamts Umweltschutz, Ausgburg 165:1–365Google Scholar
  2. Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol Evol 14:63–68PubMedCrossRefGoogle Scholar
  3. Braun-Blanquet J (1964) Pflanzensoziologie, 3rd edn. Springer, Wien, New-YorkGoogle Scholar
  4. Fischer FP (2003) Langzeitmonitoring von Heuschreckenbeständen im NSG Garchinger Heide 1994– 2001. Angew Landschaftsökol 55:201–210Google Scholar
  5. Fischer M, Stöcklin J (1997) Local extinction of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737CrossRefGoogle Scholar
  6. Gibson CWD, Brown VK (1991) The nature and rate of development of calcareous grassland in southern Britain. Biol Conserv 58:297–316CrossRefGoogle Scholar
  7. Gigon A (1997) Fluktuationen des Deckungsgrades und die Koexistenz von Pflanzenarten in Trespen- Halbtrockenrasen (Mesobromion). Phytocoenologia 27:275–287Google Scholar
  8. Gough MW, Marrs RH (1990) A comparison of soil fertility between semi-natural and agricultural plant communities: implications for the creation of species-rich grassland on abandoned agricultural land. Biol Conserv 51:83–96CrossRefGoogle Scholar
  9. Graham DJ, Hutchings MJ (1988) A field investigation of germination from the seed bank of a chalk grassland ley on former arable land. J Appl Ecol 25:253–263CrossRefGoogle Scholar
  10. Harper JL (1977) Population biology of plants. Academic Press, LondonGoogle Scholar
  11. Hölzel N, Otte A (2003) Restoration of a species-rich flood meadow by topsoil removal and diaspore transfer with plant material. Appl Veg Sci 6:131–140CrossRefGoogle Scholar
  12. Hutchings MJ, Booth KD (1996a) Studies on the feasibility of re-creating chalk grassland vegetation on ex-arable land. I. The potential roles of the seed bank and the seed rain. J Appl Ecol 33:1171–1181CrossRefGoogle Scholar
  13. Hutchings MJ, Booth KD (1996b) Studies on the feasibility of re-creating chalk grassland vegetation on ex-arable land. II. Germination and early survivorship of seedlings under different management regimes. J Appl Ecol 33:1182–1190CrossRefGoogle Scholar
  14. Kirmer A, Mahn E-G (2001) Spontaneous and initiated succession on unvegetated slopes in the abandoned lignite-mining area of Goitsche, Germany. Appl Veg Sci 4:19–27Google Scholar
  15. Kiehl K, Wagner C (2006) Effect of hay transfer on long-term establishment of vegetation and grasshoppers on former arable fields. Restor Ecol 14:157–166CrossRefGoogle Scholar
  16. Kiehl K, Thormann A, Pfadenhauer J (2003) Nährstoffdynamik und Phytomasseproduktion in neu angelegten Kalkmagerrasen auf ehemaligen Ackerflächen. In: Pfadenhauer J, Kiehl K (eds) Renaturierung von Kalkmagerrasen. Angew Landschaftsökol 55:39–71Google Scholar
  17. Kiehl K, Thormann A, Pfadenhauer J (2006) Evaluation of initial restoration measures during the restoration of calcareous grasslands on former arable fields. Restor Ecol 14:148–156CrossRefGoogle Scholar
  18. Korneck D, Müller T, Oberdorfer E (1993) Sand- und Trockenrasen, Heide- Borstgras-Gesellschaften, alpine Magerrasen, Saum-Gesellschaften, Schlag- und Hochstauden-Fluren. In: Oberdorfer E (ed) Süddeutsche Pflanzengesellschaften. Teil 2. Gustav Fischer Verlag, JenaGoogle Scholar
  19. Lippert W (1989) Die Garchinger Haide und ihre Pflanzenwelt. In: Gemeinde Eching (ed) Garchinger Heide – Echinger Lohe, Naturschutzgebiete in der Gemeinde Eching, Landkreis Freising. Bruckmann, München, pp 34–45Google Scholar
  20. Marrs RH (1993) Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Adv Ecol Res 24:241–300CrossRefGoogle Scholar
  21. McCune B, Mefford MJ (1999) Multivariate analysis of ecological data. MJM Software, Glenede Beach, Oregon, USAGoogle Scholar
  22. Mortimer SR, Hollier JA, Brown VK (1998) Interactions between plant and insect diversity in the restoration of lowland calcareous grasslands in southern Britain. Appl Veg Sci 1:101–114CrossRefGoogle Scholar
  23. Muller S, Dutoit T, Alard D, Grévilliot F (1998) Restoration and rehabilitation of species-rich grassland ecosystems in France: a review. Restor Ecol 6:94–101CrossRefGoogle Scholar
  24. Neitzke M (1998) Changes in nitrogen supply along transects from farmland to calcareous grassland. Z Pflanzenernährung Bodenkunde 161:639–646Google Scholar
  25. Oberdorfer E (1994) Pflanzensoziologische Exkursionsflora. 7. Auflage. Ulmer, Stuttgart, 1050SGoogle Scholar
  26. Pakemann RJ, Pywell RF, Wells TCE (2002) Species spread and persistence: implications for experimental design and habitat-creation. Appl Veg Sci 5:75–86CrossRefGoogle Scholar
  27. Patzelt A, Wild U, Pfadenhauer J (2001) Restoration of wet fen meadows by topsoil removal: vegetation development and germination biology of fen species. Restor Ecol 9:127–136CrossRefGoogle Scholar
  28. Pfadenhauer J (2001) Some remarks on the socio-cultural background of restoration ecology. Restor Ecol 9:220–229CrossRefGoogle Scholar
  29. Pfadenhauer J, Miller U (2000) Verfahren zur Ansiedlung von Kalkmagerrasen auf Ackerflächen. In: Pfadenhauer J, Fischer FP, Helfer W, Joas C, Lösch R, Miller U, Miltz C, Schmid H, Sieren E, Wiesinger K (eds) Sicherung und Entwicklung der Heiden im Norden von München. Angew Landschaftsökol 32:37–87Google Scholar
  30. Pillar VD (2004) MULTIV: multivariate exploratory analysis, randomization testing and bootstrap resampling. User’s Guide v. 2.3.10. Departamento de Ecologia, UFRGS, Porto Alegre, RS, Brazil, URL:
  31. Pillar VD, Orloci L (1996) On randomization testing in vegetation science: multifactor comparisons of relevé groups. J Veg Sci 7:585–592CrossRefGoogle Scholar
  32. Poschlod P, Bonn S (1998) Changing dispersal processes in the Central European landscape since the last ice age: an explanation for the actual decrease of plant species richness in different habitats? Acta Bot Neerl 47:27–44Google Scholar
  33. Poschlod P, WallisDeVries MF (2002) The historical and socio-economic perspective of calcareous grasslands – lessons from the distant and recent past. Biol Conserv 104:361–376CrossRefGoogle Scholar
  34. Prach K, Pyšek A (1994) Clonal plants – what is their role in succession? Folia Geobot Phytotaxon 29:307–320Google Scholar
  35. Pywell RF, Bullock JM, Hopkins A, Walker KJ, Sparks TH, Burkes MJW, Peel S (2002) Restoration of species-rich grassland on arable land: assessing the limiting processes using a multi-site experiment. J Appl Ecol 39:294–309CrossRefGoogle Scholar
  36. Rizand A, Marrs RH, Gough MW, Wells TCE (1989) Long-term effects of various conservation management treatments on selected soil properties of chalk grassland. Biol Conserv 49:105–112CrossRefGoogle Scholar
  37. Rosén E (1995) Periodic droughts and long-term dynamics of Alvar grassland vegetation on Öland, Sweden. Folia Geobot Phytotaxon 30:131–140CrossRefGoogle Scholar
  38. Ryser P (1990) Influence of gaps and neighbouring plants on seedling establishment in limestone grassland. Veröff Geobot Instit ETH Zür, Stift Rübel 104:1–71Google Scholar
  39. Schiefer J (1984) Möglichkeiten der Aushagerung von nährstoffreichen Grünlandflächen. Veröffentlichungen Naturschutz und Landschaftspflege Baden-Württemberg 57/58:33–63Google Scholar
  40. Schmidt W (1981) Ungestörte und gelenkte Sukzession auf Brachäckern. Scripta Geobot 15:1–199Google Scholar
  41. Tikka PM, Heikkilä T, Heiskanen M, Kuitunen A (2001) The role of competition and rarity in the restoration of dry grasslands in Finland. Appl Veg Sci 4:139–146Google Scholar
  42. Tränkle U (2002) Sieben Jahre Mähgutflächen – Sukzessionsuntersuchungen zur standorts- und naturschutzgrechten Renaturierung von Steinbrüchen durch Mähgut, vol 1. Themenheft der Umweltberatung im ISTE Baden-Württemberg, Ostfildern, pp 1–56Google Scholar
  43. Verhagen R, Klooker J, Bakker JP, van Diggelen R (2001) Restoration success of low-production plant communities on former agricultural soils after topsoil removal. Appl Veg Sci 4:75–82CrossRefGoogle Scholar
  44. Walker KJ, Stevens PA, Stevens DP, Mountford JO, Manchester SJ, Pywell RF (2004) The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biol Conserv 119:1–18CrossRefGoogle Scholar
  45. WallisDeVries MF, Poschlod P, Willems JH (2002) Challenges for the conservation of calcareous grasslands in northwestern Europe: integrating the requirements of flora and fauna. Biol Conserv 104:265–273CrossRefGoogle Scholar
  46. Wells TCE (1990) Establishing chalk grassland on previously arable land using seed mixtures. In: Hillier SH, Walton DWH, Wells DA (eds) Calcareous grassland: ecology and management. Bluntisham Books, Bluntisham, Huntingdon, UK, pp 169–170Google Scholar
  47. Wells TCE (1991) Restoring and re-creating species-rich lowland dry grassland. In: Goriup PD, Batten LA, Norton JA (eds) The conservation of lowland dry grasslands birds in Europe. Joint Nature Conservation Committee, Reading, UK, pp 125–132Google Scholar
  48. Wells TCE, Sheail J, Ball DF, Ward LK (1976) Ecological studies on the Porton Ranges: relationships between vegetation, soils and land-use history. J Ecol 64:589–626CrossRefGoogle Scholar
  49. Willems JH (2001) Problems, approaches and results in restoration of Dutch calcareous grassland during the last 30 years. Restor Ecol 9:147–154CrossRefGoogle Scholar
  50. Wisskirchen R, Haeupler H (1998) Standardliste der Farn- und Blütenpflanzen Deutschlands. Ulmer, StuttgartGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Vegetation EcologyTechnische Universität MünchenFreisingGermany

Personalised recommendations