Advertisement

Plant Ecology

, Volume 187, Issue 1, pp 109–125 | Cite as

Hybrid Zones Between Two European Oaks: a Plant Community Approach

  • Rut Sánchez de DiosEmail author
  • Marta Benito-Garzón
  • Helios Sainz-Ollero
Original Paper

Abstract

Phenomena of hybridization can affect the ecology and evolution of the species involved in the process, as well as their communities. Although numerous papers focus upon the problem of taxonomy, few of these have attempted to study hybrid zones in relation to the analysis of their communities. On the Iberian Peninsula, hybridization phenomena among different oak species are frequent. It is, however, between Quercus faginea Lam. and Quercus pubescens Willd. where the most noteworthy hybridization phenomenon occurs. In this respect, we are familiar with the existence of different introgression levels but we are unaware of whether these hybrids are the transitory result of the interspecific genetic flow or whether these are maintained by means of extrinsic selection processes.

Study of plant communities’ flora and environment might shed light upon this issue. Comparison between plant communities dominated by one of the parental species and those dominated by individuals of hybrid origin might enable us to establish the presence or absence of an environment that is potentially selective in favour of the hybrids. Thus the possible existence of extrinsic selection. Furthermore, this information will help us to understand plant community distribution in an area␣that is difficult to interpret.

To this purpose, we used multivariate ordination techniques (DCA and CCA) based upon a total of 395 floristic releves covering the whole range of the parental species on the Iberian Peninsula and upon climatic and edaphic variables for each of these releves. We also compared the groups obtained in relation to floristic similarity (Jaccard index), richness and diversity (Shannon–Weaver index).

Forests associated with Quercus pubescens are related to heavy summer precipitation, whereas Quercus faginea forests correspond to lower values of this variable and higher ones for continentality. Between both formations, there is a broad hybrid zone, with diffused borders that are related to an environmental gradient of Mediterranean influence. In this region, two types of forest communities were distinguished, which enabled us to divide the hybrid zones into two territories.

Our results allowed us to locate the hybrid zone in an ecotone. The differentiation between habitats appears to indicate models of ecological selection. These models require, by definition, the presence of an environmental gradient between the parental zones. We are, however, aware of the need for future experiments in order to establish whether the hybrids are better adapted than the parental species. Only with availability of all this information can intrinsic selection be rejected.

Keywords

Canonical Correspondence Analysis Iberian Peninsula Quercus faginea Quercus pubescens 

Abbreviations

DCA

Detrended Correspondence Analysis

CCA

Canonical Correspondence Analysis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Part of the map appearing in Fig. 2 was taken from the bibliographic review by J.C. Moreno Sainz. We wish to thank Felipe Domínguez Lozano, Francisco Martín Azcárate and David Galicia Herbada for their valuable suggestions. We also wish to acknowledge the efforts of two anonymous reviewers for their helpful comments on earlier drafts of this paper.

References

  1. Amaral Franco J (1990) Quercus. In: Castroviejo et al (ed) Flora Ibérica, vol. II. Real Jardín Botánico de Madrid, CSIC, Madrid, pp 15–36Google Scholar
  2. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, OxfordGoogle Scholar
  3. Arnold ML, Bouck AC, Cornman RS (2004) Verne Grant and Louisiana irises: is there anything new under the sun?. New Phytol 164(1):143–149CrossRefGoogle Scholar
  4. Aseguinolaza Ipaguirre C, Gómez García D, Lizaur Sukia X, Montserrat Marti G, Morante Serrano G, Salaverria Monfort MR, Uribe-Echebarria Diaz PM (1985) Catálogo florístico de Álava, Vizcaya y Guipúzcoa. Servicio Central de Publicaciones del Gobierno Vasco. Vitoria-GasteizGoogle Scholar
  5. Aseguinolaza C, Gómez D, Lizaur X, Montserrat G, Morante G, Salaverría MR, Uribe-Echebarría PM (1989) Vegetación de la Comunidad Autónoma del País Vasco. Gobierno Vasco, VitoriaGoogle Scholar
  6. Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Systemat 16:113–148CrossRefGoogle Scholar
  7. Benito Garzón M, Maldonado Ruiz J, Sánchez de Dios R, Sainz Ollero H (2003) Predicting Spanish sclerophyllous forest potentiality using artificial neural networks. Graellsia 59(2–3):345–358Google Scholar
  8. Bolòs O (1998) ORCA. Atlas corològic de la flora vascular dels països catalans. Primera compilació general. Institut D’Estudis Catalans, BarcelonaGoogle Scholar
  9. Bolòs O, Montserrat P (1984) Datos sobre comunidades de los Pirineos. Lazaroa 5:89–96Google Scholar
  10. Braun-Blanquet J (1932) Plant sociology, the study of plant communities. McGraw-Hill, New YorkGoogle Scholar
  11. Bruschi P, Vendramin GG, Bussotti F, Grossoni P (2000) Morphological and molecular differentiation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. (Fagaceae) in Northern and Central Italy. Ann Bot 85:325–333CrossRefGoogle Scholar
  12. Burger WC (1975) The species concept in Quercus. Taxon 24(1):45–50CrossRefGoogle Scholar
  13. Campbell DR (2004) Natural selection in Ipomopsis hybrid zones: implications for ecological speciation. New Phytol 161:83–90CrossRefGoogle Scholar
  14. Campbell DR, Waser NM (2001) Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution 55(4):669–676PubMedCrossRefGoogle Scholar
  15. Campbell SP, Boecklen WJ (2002) Are plant hybrid zones centers of vertebrate biodiversity? A test in the Quercus grisea × Quercus gambelii species complex. Biodiversity Conserv 11(3):443–467CrossRefGoogle Scholar
  16. Castroviejo et al (eds) (1986–2003) Flora Ibérica. Real Jardín Botánico de Madrid, CSIC, MadridGoogle Scholar
  17. Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (eds) (1997) Los bosques ibéricos. Una interpretación geobotánica. Planeta, BarcelonaGoogle Scholar
  18. Craft KJ, Ashley MV, Koenig WD (2002) Limited hybridization between Quercus lobata and Quercus douglasii (Fagaceae) in a mixed stand in Central Coastal California. Am J Bot 89(11):1792–1798Google Scholar
  19. Díaz Fernández P, Jiménez Sancho MP, Martín Albertos S, de Tuero y de Reina M, Gil Sánchez L (1995) Regiones de procedencia de Quercus robur L., Q. petraea (Matt.) Liebl. y Q. humilis Miller. ICONA, MadridGoogle Scholar
  20. Dodd RS, Afzal-Rafii Z (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58(2):261–269PubMedCrossRefGoogle Scholar
  21. Dumolin-Lapègue S, Demesure B, Fineschi S, Le Corre V, Petit RJ (1997) Phylogeographic structure of white oaks throughout the European Continent. Genetics 146:1475–1487PubMedGoogle Scholar
  22. Dupouey JL, Badeau V (1993) Morphological variability of oaks (Quercus robur L., Q. petraea (Matt) Liebl, Q. pubescens Willd) in northeastern France: preliminary results. Ann Sci Forest 50(suppl 1):35s–40sGoogle Scholar
  23. Font Tullot I (1983) Climatología de España y Portugal. Instituto Nacional de Meteorología, MadridGoogle Scholar
  24. Freeman DC, Wang H, Sanderson S, McArthur ED (1999) Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata, Asteraceae): VII. Community and demographic analyses. Evolut Ecol Res 1:487–502Google Scholar
  25. Fritsche F, Kaltz O (2000) Is the Prunella (Lamiaceae) hybrid zone structures by an environmental gradient? Evidence from a reciprocal transplant experiment. Am J Bot 87(7):995–1003CrossRefGoogle Scholar
  26. Gil Sánchez L, Jiménez Sancho MP, Díaz-Fenández PM (1996) Quercus complex in Spain: an overview of its present state. In: Kremer A, Mühs H (eds) Inter- and intra-specific variation in European oaks: evolutionary implications and practical consequences, Brussels, June 15–16, 1994. Office for Official Publications of the European CommunitiesGoogle Scholar
  27. González-Rodríguez A, Bain JF, Golden JL, Oyama K (2004) Chloroplast DNA variation in the Quercus affinisQ. laurina complex in Mexico: geographical structure and associations with nuclear and morphological variation. Mol Ecol 13:3467–3476CrossRefPubMedGoogle Scholar
  28. Grant V (1981) Plant speciation. Columbia University Press, New York, USAGoogle Scholar
  29. Greig-Smith P (1983) Quantitative plant ecology, 3rd ed. Blackwell, OxfordGoogle Scholar
  30. Harrison RJ (1986) Pattern and process in a narrow hybrid zone. Heredity 56:337–349Google Scholar
  31. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  32. Hill MO (1979) DECORANA: A FORTRAN program for detrended correspondence analysis and reciprocal averaging. Department of Ecology and Systematics, Cornell University, Ithaca, New YorkGoogle Scholar
  33. Himrane H, Camarero JJ, Gil-Pelegrín E (2004) Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens). Trees—Struct Funct 18(5):566–575Google Scholar
  34. Hoechwender CG, Fritz RS (2004) Plant genetic differences influence herbivore community structure: evidence from a hybrid willow system. Oecologia 138(7):547–557CrossRefPubMedGoogle Scholar
  35. Howard DJ (1986) A zone of overlap and hybridization between two ground cricket species. Evolution 40:34–43CrossRefGoogle Scholar
  36. Howard DJ, Preszler RW, Williams J, Frenchel S, Boeklen WJ (1997) How discrete are oak species? Insights from a hybrid zone between Quercus grisea and Quercus gambelii. Evolution 51(3):747–755CrossRefGoogle Scholar
  37. Huguet del Villar E (1958) Estudios sobre los Quercus del Oeste del mediterráneo. Anal Institut Bot Cavanilles 15:3–114Google Scholar
  38. Ishida TA, Hattori K, Sato H, Kimura MT (2003) Differentiation and hybridization between Quercus crispula and Quercus dentata (Fagaceae): insights from morphological traits, amplified fragment length polymorphism markers, and leafminer composition. Am J Bot 90(5):769–776Google Scholar
  39. Izard M (1985) Le climat. In: Dupias G (ed) La végétation des Pyrénees. Editions du CNRS, Paris, pp 17–36Google Scholar
  40. Jiménez Sancho MP, Díaz Fernández PM, Martín Albertos S, Gil Sánchez L (1998) Regiones de procedencia de Quercus pyrenaica Willd., Q. faginea Lam y Q. canariensis Willd. Organismo Autónomo de Parques Nacionales, MadridGoogle Scholar
  41. Kelleher CT, Hodkinson TR, Douglas GC, Kelly DL (2005) Species distinction in Irish populations of Quercus petraea and Q. robur: morphological versus molecular analyses. Ann Bot 96(7):1237–1246CrossRefPubMedGoogle Scholar
  42. Kleinschmit JRC, Bacilieri R, Kremer A, Kleinschmit J (1995) Comparison of morphological and genetic traits of pedunculate oak (Quercus robur L.) and sessile oak (Quercus petraea (Matt.) Liebl.). Silvae Genet 44:256–269Google Scholar
  43. Krebs CJ (1999) Ecological methodology, 2nd edn. Benjamin/Cummings, Menlo Park, CAGoogle Scholar
  44. Kremer A, Dupouey JL, Deans JD, Cottrell J, Csaikl UM, Finkeldey R, Espinel S, Jensen JS, Kleinschmit J, Van Dam B, Ducousso A, Forrest I, Lopez de Heredia U, Lowe AJ, Tutkova M, Munro RC, Steinhoff S, Badeau V (2002) Leaf morphological differentiation between Quercus robur and Quercus petraea is stable across western European mixed oaks stands. Ann Sciences Forest 59:777–787CrossRefGoogle Scholar
  45. Loidi J, Herrera M (1990) The Quercus pubescens and Quercus faginea forest in the Basque Country (Spain): distribution and typology in relation to climatic factors. Vegetatio 90:81–92CrossRefGoogle Scholar
  46. M.A.P.A. (1974–1990) Caracterizaciones agroclimáticas de las provincias españolas. Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  47. Mitasova H, Mitas L (1993) Interpolation by regularized spline with tension: I. Theory and implementation. Math Geol 25:641–655CrossRefGoogle Scholar
  48. Montserrat P (1957) Algunos aspectos de la diferenciación sistemática de los Quercus ibéricos. Publ Instit Biol Aplicada 26:61–75Google Scholar
  49. Moore WS (1977) An evaluation of narrow hybrid zones in vertebrates. Quart Rev Biol 52:263–277CrossRefGoogle Scholar
  50. Moore WS, Price JT (1993) Nature of selection in the northern flicker hybrid zone and its implications for speciation theory. In: Harison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 196–225Google Scholar
  51. Muir G, Fleming CC, Schlötterer C (2000) Species status of hybridizing oaks. Nature 405:1016CrossRefPubMedGoogle Scholar
  52. Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. Forest Ecol Manage 156:89–102CrossRefGoogle Scholar
  53. Petit RJ, Kremer A, Wagner DB (1993) Geographic structure of chloroplast DNA polymorphisms in European oaks. Theoret Appl Genet 87:122–128CrossRefGoogle Scholar
  54. Petit RJ, Csaikl UM, Bordács S, Burg K, Coart E, Cottrell J, Van Dam B, Deans JD, Dumolin-Lapèague S, Fineschi S, Finkeldey R, Gillies A, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Pemonge MH, Popescu F, Slade D, Olalde M, Tabberner H, Tauchini D, de Vríes SGM, Ziegenhagen B, Kremer A (2002a) Chloroplast DNA variation in European white oaks: phylogeography and patterns of diversity based on data from over 2600 populations. Forest Ecol Manage 156:5–26CrossRefGoogle Scholar
  55. Petit RJ, Brewer S, Bordacs S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabberner H, de Vríes SGM, Ziegenhagen B, de Beaulieu JL, Kremer A (2002b) Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. Forest Ecol Manage 156:49–74CrossRefGoogle Scholar
  56. Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161(1):151–154CrossRefGoogle Scholar
  57. Ponton S, Dupouey JL, Breda N, Feuillat F, Bodénès C, Dreyer E (2001) Carbon isotope discrimination and woody anatomy variations in mixed stands of Quercus robur and Quercus petraea. Plant, Cell Environ 24:861–868CrossRefGoogle Scholar
  58. Rivas-Martínez S, Báscones JC, Díaz TE, Fernández-González F, Loidi J (1991) Vegetación del Pirineo occidental y Navarra. Itinera Geobot 5:5–456Google Scholar
  59. Rivas-Martínez S, Sáenz Laín C (1992) Enumeración de los Quercus de la Península ibérica. Folia Bot Matritensis 9:1–19Google Scholar
  60. Rivas-Martínez S, Díaz TE, Fernández González F, Izco J, Loidi J, Lousa M, Penas A (2002) Vascular plant communities of Spain and Portugal. Itinera Geobot 15(1):5–922Google Scholar
  61. Ruiz de la Torre J (1990–2003) Mapa Forestal de España, 1:200,000. Ministerio de Agricultura, MadridGoogle Scholar
  62. Schwarz O (1964, 1993) Quercus. In: Tutin TG (ed) Flora Europaea, vol. I. Cambridge, pp 61–64Google Scholar
  63. Schweitzer JA, Bailey JK, Rehill BJ, Martinsen GD, Hart SC, Lindroth RL, Kleim P, Whitham TG (2004) Genetically based trait in a dominant tree affects ecosystem processes. Ecol Lett 7(2):127–134CrossRefGoogle Scholar
  64. Tavernier R (1985) Soil Map of the European Communities 1:1,000,000. Commission of the European Communities, Brussels. URL: http://www.grid.unep.ch/data/data.php?category=lithosphere
  65. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct analysis. Ecology 67(5):1167–1179CrossRefGoogle Scholar
  66. Ter Braak CJF, Šmilauer P (1998) Canoco reference manual and user’s guide to canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca, NY, USAGoogle Scholar
  67. Tovar-Sánchez E, Oyama K (2004) Natural hybridization and hybrid zones between Quercus crassifolia and Quercus crassipes (Fagaceae) in Mexico: morphological and molecular evidence. Am J Bot 91(9):1352–1363Google Scholar
  68. Vicioso C (1950) Revisión del género Quercus en España. Ministerio de Agricultura, MadridGoogle Scholar
  69. Villar L, Sesé JA, Ferrández JV (1997) Atlas de Flora del Pirineo Aragonés, vol. I. C.P.N. Aragón, ZaragozaGoogle Scholar
  70. Wang H, McArthur ED, Sanderson SC, Graham JH, Freeman DC (1997) Narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata Asteraceae) IV. Reciprocal transplant experiments. Evolution 51:95–102CrossRefGoogle Scholar
  71. Whitman TG, Morrow PA, Potts BM (1994) Plant hybrid zones as centers of biodiversity: the herbivore community of two endemic Tasmanian eucalypts. Oecologia 97:481–490CrossRefGoogle Scholar
  72. Whitman TG, Martinsen GD, Floate KD, Dungey HS, Potts BM, Keim P (1999) Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structure. Ecology 80(2):416–428CrossRefGoogle Scholar
  73. Whitman TG, Young WP, Martinsen GD, Gehring CA, Schweitzer JA, Shuster SM, Wimp GM, Fischer DG, Bailey JK, Lindroth RL, Woolbright S, Kuske CR (2003) Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84(3):559–573Google Scholar
  74. Williams JB, Boecklen WJ, Howard DJ (2001) Reproductive processes in two oak (Quercus) contact zones with different levels of hybridization. Heredity 87:680–690CrossRefPubMedGoogle Scholar
  75. Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15(4):1039–1053CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Rut Sánchez de Dios
    • 1
    Email author
  • Marta Benito-Garzón
    • 1
  • Helios Sainz-Ollero
    • 1
  1. 1.Botany Unit, Science FacultyAutónoma University of MadridMadridSpain

Personalised recommendations