Plant Ecology

, Volume 184, Issue 1, pp 111–130 | Cite as

Diversity of wetland vegetation in the Bulgarian high mountains, main gradients and context-dependence of the pH role

  • Petra Hájková
  • Michal Hájek
  • Iva Apostolova


We fill a gap in understanding wetland vegetation diversity and relationship with environmental determinants in Bulgarian high mountains. A total of 615 phytosociological samples were taken from springs, mires, wet meadows and tall-forb habitats throughout Bulgaria, of which 234 relevés are from mire and spring vegetation above timberline. The vegetation was classified by TWINSPAN and the resulting vegetation types were reproduced by the formal definitions using the combination of Cocktail species groups based on phi-coefficient of joint co-occurrence of the species. Nine vegetation types of springs and fens have been clearly delimited above the timberline. All vegetation types include Balkan endemic species, the representation of which varies. Fens generally harbour more Balkan endemics than do springs, with the exception of species-poor high-altitude Drepanocladetum exannulati. The gradient structure of the vegetation was revealed by DCA and by CCA with forward selection of environmental factors. The major determinants of vegetation variation strongly differ above and below the timberline and likewise between springs and fens. The base-richness gradient controls the floristic variation of Bulgarian submontane fens, whereas the complete data set including both submontane and subalpine fens is governed by the altitude gradient from lowland and basin fens to subalpine fens rich in Balkan endemics. When focusing on sites above the timberline only, the first DCA axis separates fens from springs without organic matter. The major species turnover in springs follows the variation in water pH and mineral content in water, whereas fen vegetation variation is primarily controlled by succession gradient of peat accumulation. Altitude remains an important factor in all cases. Weak correlation between water pH and conductivity was found. This correlation was even statistically insignificant in fens above the timberline. Water pH is not influenced by mineral richness in Bulgarian high mountains, since it is buffered by decomposition of organic matter in fens. In springs, pH reaches maximum values due to strong aeration caused by water flow. The plant species richness decreases significantly with increasing altitude. The increase of species richness towards circumneutral pH, often found in mires, was not confirmed in Bulgarian high mountains. The correlation between species richness and pH was significant only when arctic-alpine species and allied European high-mountain species were considered separately. The richness of boreal species was independent on pH. Some of them had their optima shifted to more acidic fens as compared to regions below the timberline. Our results suggest that subalpine spring and fen vegetation should be analysed separately with respect to vegetation-environment correlations. Separate analysis of fens below and above timberline is quite appropriate.


Altitude Balkan Peninsula Fen Floristic elements Ordination Plant communities Subalpine spring Water conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors want to express their thanks to the Grant Agency of the Czech Academy of Sciences, project no. B6163302. We are also very grateful to Tenyo Meshinev for crucial help with organisation of our common field investigations. Martin Kočí and Kateřina Kočí are especially acknowledged for a very pleasant field help and for providing the unpublished data of tall-forb vegetation. We would like to express our thanks also to Anna Ganeva, Rossen Tzonev, Stoyan Stoyanov, Zuzana Rozbrojová, Marcela Havlová, Petr Wolf, Jitka Wolfová, Michaela Sedlářová, Natálie Wernerová and Jiří Honěk who participated in particular field excursions. We are also obliged to Jan Roleček and two anonymous reviewers for the valuable comments to the manuscript. The research was performed within the long-term research plans of Botanical Institute of Czech Academy of Sciences (no. AVZ0Z60050516) and of Masaryk University, Brno (no. MSM00216 22416).


  1. Andrus R.E. (1986). Some aspects of Sphagnum ecology. Canadian Journal of Botany 64: 416–426CrossRefGoogle Scholar
  2. Apostolova I. and Slavova L. 1997. Konspekt na rastitelnite s’obšestva v Bulgarii. Compendium of Bulgarian plant communities published during 1891–1995, SofiaGoogle Scholar
  3. Assyov B., Dimitrov D., Vassilev R. and Petrova A. (2002). Conspectus of the Bulgarian vascular flora. Distribution maps and floristic elements. BSBCP, SofiaGoogle Scholar
  4. Boşcaiu N. (1971a). Flora şi vegetaţia munţilor Ţarcu, Godeanu şi Cernei. Editura Academiei Republici Socialiste România, BucureştiGoogle Scholar
  5. Boşcaiu N. (1971b). Vegetaţia fontinală din munţii Ţarcu, Godeanu şi Cernei. Studii şi Communicari, Sibiu 16: 123–133Google Scholar
  6. Bragazza L. and Gerdol R. (1999a). Ecological gradients on some Sphagnum mires in the southeastern Alps (Italy). Applied Vegetation Science 2: 55–60CrossRefGoogle Scholar
  7. Bragazza L. and Gerdol R. (1999b). Hydrology, groundwater chemistry and peat chemistry in relation to habitat conditions in a mire on the South-eastern Alps of Italy. Plant Ecology 44: 243–256CrossRefGoogle Scholar
  8. Bragazza L., Alber R. and Gerdol R. (1998). Seasonal chemistry of pore water in hummocks and hollows in a poor mire in the southern Alps (Italy). Wetlands 18: 320–328CrossRefGoogle Scholar
  9. Bragazza L., Rydin H., Gerdol R. (2005). Multiple gradients in mire vegetation - a comparison of a Swedish and an Italian bog. Plant Ecology 177: 223–236CrossRefGoogle Scholar
  10. Bruelheide H. 1995. Die Grünlandgesellschaften des Harzes und Standortsbedingungen mit einem Beitrag zum Gliederungspringsprinzip auf der Basis von statistisch ermittelten Artengruppen. Dissertationes Botanicae 244: 1–338Google Scholar
  11. Cheshitev G. and Kanchev I. (eds) 1989. Geological map of Bulgaria, scale 1:500 000Google Scholar
  12. Coldea G. (eds) (1997). Les associations vegetales de Roumanie. Tome I. Les associations herbacees naturalles, Presses Univ., ClujGoogle Scholar
  13. Coudun Ch. and Gégout J.-C. (2005). Ecological behaviour of herbaceous forest species along a pH gradient: a comparison between oceanic and semicontinental regions in northern France. Global Ecology and Biogeography 14: 263–270CrossRefGoogle Scholar
  14. Diekmann M. and Lawesson J.E. (1999). Shifts in ecological behaviour of herbaceous forest species along a transect from northern central to north Europe. Folia Geobotanica 34: 127–141CrossRefGoogle Scholar
  15. Dierssen K. 1982. Die wichtigsten Pflanzengesellschaften der Moore NW-Europas. Conserv. Jard. Bot. sér. 6, Ville GeneveGoogle Scholar
  16. Dierssen K. (1996). Vegetation Nordeuropas. E. Ulmer, StuttgartGoogle Scholar
  17. Dierssen B. and Dierssen K. (1984). Vegetation und Flora der Schwarzwaldmoore. Beihefte zu den Veröffentlichungen für Natuschutz und Landschaftspflege in Baden-Württenberg, Karlsruhe, 39: 1–512Google Scholar
  18. Ganeva A. and Nacheva R. (2003). Check-list of the bryophytes of Bulgaria with data on their distribution. I. Hepaticae and Anthocerotae. Cryptogamie, Bryologie 24: 229–239Google Scholar
  19. Gough L., Shaver G.R., Carroll J., Royer D.L. and Laundre J.A. (2000). Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. Journal of Ecology 88: 54–66CrossRefGoogle Scholar
  20. Ewald J. (2003). The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Folia Geobotanica 38: 357–366CrossRefGoogle Scholar
  21. Gerdol R. (1995). Community and species-performance patterns along an alpine poor–rich mire gradient. Journal of Vegetation Science 6: 175–182CrossRefGoogle Scholar
  22. Gerdol R. and Tomaselli M. 1997. Vegetation of wetlands in the Dolomites. Dissertationes Botanicae 281: 1–197Google Scholar
  23. Gerdol R. and Bragazza L. (2001). Syntaxonomy and community ecology of mires in the Rhaetian Alps (Italy). Phytocoenologia 29: 271–299Google Scholar
  24. Grabherr G. and Mucina L. (eds) (1993). Die Pflanzengesellschaften Österreich. Teil II. Natürliche waldfreie Vegetation. Gustav Fischer Verlag, JenaGoogle Scholar
  25. Hájek M. (2002). The class Scheuchzerio-Caricetea fuscae in the Western Carpathians: indirect gradient analysis, species groups and their relation to phytosociological classification. Biologia 57: 461–469Google Scholar
  26. Hájek M. and Háberová I. (2001). Scheuchzerio-Caricetea fuscae. In: Valachovié M. (eds) Plant communities of Slovakia. Wetland vegetation. Veda, Bratislava, pp. 185–274Google Scholar
  27. Hájek M. and Hekera P. (2004). Can seasonal variation in fen water chemistry influence the reliability of vegetation-environment analyses? Preslia 76: 1–14Google Scholar
  28. Hájek M., Hekera P. and Hájková P. (2002). Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobotanica 37: 205–224CrossRefGoogle Scholar
  29. Hájek M., Tzonev R.T., Hájková P., Ganeva A.S. and Apostolova I.I. 2005. Plant communities of subalpine mires and springs in the Vitosha Mt. Phytologia Balcanica, 11: 193–205Google Scholar
  30. Hájková P. and Hájek M. (2003). Species richness and above-ground biomass of poor and calcareous spring fens in the flysch West Carpathians, and their relationship to water and soil chemistry. Preslia 75: 271–287Google Scholar
  31. Hájková P. and Hájek M. (2004). Bryophyte and vascular plant responses to acidity and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobotanica 39: 335–351CrossRefGoogle Scholar
  32. Hájková P., Wolf P. and Hájek M. (2004). Environmental factors and Carpathian spring fen vegetation: the importance of scale and temporal variation. Annales Botanici Fennici 41: 249–262Google Scholar
  33. Hill M.O. (1979). TWINSPAN - a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Section of Ecology and Systematics, Cornell University, IthacaGoogle Scholar
  34. Horvat I. (1960). Planinska vegetacija Makedonije u svijetlu suvremenih istraživanja. Acta Musei Macedonici Scientiarum Naturalium 6: 163–203Google Scholar
  35. Horvat I., Glavac V. and Ellenberg H. (1974). Vegetation Sudosteuropas. G. Fischer Verlag, StuttgartGoogle Scholar
  36. Chytrý M. and Otýpková Z. (2003). Plot sizes used for phytosociological sampling of European vegetation. Journal of Vegetation Science 14: 563–570CrossRefGoogle Scholar
  37. Chytrý M., Exner A., Hrivnák R., Ujházy K., Valachovié M. and Willner W. (2002). Context-dependence of diagnostic species: A case study of the Central European spruce forests. Folia Geobotanica 37: 403–417CrossRefGoogle Scholar
  38. Chytrý M., Tichý L., Holt J. and Botta-Dukát Z. (2002b). Determination of diagnostic species with statistical fidelity measures. Journal of Vegetation Science 13: 79–90CrossRefGoogle Scholar
  39. Chytrý M., Tichý L. and Roleéek J. (2003). Local and regional patterns of species richness in Central European vegetation types along the pH/calcium gradient. Folia Geobotanica 38: 429–442CrossRefGoogle Scholar
  40. Knollová I. and Chytrý M. (2004). Oak-hornbeam forests of the Czech Republic: geographical and ecological approaches to vegetation classification. Preslia 76: 291–311Google Scholar
  41. Kuželová I. and Chytrý M. (2004). Interspecific associations in phytosociological data sets: how do they change between local and regional scale? Plant Ecology 173: 247–257CrossRefGoogle Scholar
  42. Koéí M., Chytrý M. and Tichý L. (2003). Formalised reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation. Journal of Vegetation Science 14: 601–610CrossRefGoogle Scholar
  43. Kozhuharov S. (eds) (1992). Field Guide to the Vascular Plants in Bulgaria. Nauka i Izkustvo, Sofia (in Bulgarian)Google Scholar
  44. Lepš J. and Šmilauer P. 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge university pressGoogle Scholar
  45. Lieth H., Berlekamp J., Fuest S. and Riediger S. (eds) (1999). Climate Diagram World Atlas. CD-ROM, Backhuys Publishers, LeidenGoogle Scholar
  46. Malmer N. (1986). Vegetational gradients in relation to environmental conditions in northwestern European mires. Canadian Journal of Botany 64: 375–383CrossRefGoogle Scholar
  47. Marhold K. and Valachovié M. (1998). Coenotic differentiation of the intraspecific taxa of Cardamine amara (Brassicaceae) in Central Europe and the Balkan peninsula. Thaiszia – Journal of Botany 8: 147–161Google Scholar
  48. Meshinev T. and Apostolova I. (1998). Distribution of higher plants biodiversity and the problem of habitat diversity in Bulgaria. Phytologia Balcanica 4: 151–159Google Scholar
  49. Meusel H. (eds) (1978). Vergleichende Chorologie der Zentraleuropäischen Flora. Karten, Band 2. Gustav Fischer Verlag, JenaGoogle Scholar
  50. Meusel H. and Jäger E. (eds) (1992). Vergleichende Chorologie der Zentraleuropäischen Flora. Karten, Band 3. Gustav Fischer Verlag, JenaGoogle Scholar
  51. Molina J.A. (2001). Oligotrophic spring vegetation in Spanish mountain ranges. Folia Geobotanica 36: 281–291CrossRefGoogle Scholar
  52. Natcheva R. and Cronberg N. (2003). Genetic diversity in populations of Sphagnum capillifolium from the mountains of Bulgaria, and their possible refugial role. Journal of Bryology 25: 91–99Google Scholar
  53. Natcheva R. and Ganeva A. (2005). Check-list of the bryophytes of Bulgaria with data on their distribution. II. Musci. Cryptogamie, Bryologie 26: 209–232Google Scholar
  54. Nekola J.C. (2004). Vascular plant compositional gradients within and between Iowa fens. Journal of Vegetation Science 15: 771–780CrossRefGoogle Scholar
  55. Økland R.H., Økland T. and Rydgren K. (2001). A Scandinavian perspective on ecological gradients in northwest European mires: reply to Wheeler and Proctor. Journal of Ecology 89: 481–486CrossRefGoogle Scholar
  56. Perný M., Tribsch A. and Anchev M.E. (2004). Infraspecific differentiation in the Balkan diploid Cardamine acris (Brassicaceae): Molecular and morphological evidence. Folia Geobotanica 39: 405–429CrossRefGoogle Scholar
  57. Pärtel M. (2002). Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83: 2361–2366Google Scholar
  58. Roussakova V. (2000). Vegetation alpine et sous alpine superieure de la Montagne de Rila (Bulgarie). Braun-Blanquetia, Camerino 25: 1–132Google Scholar
  59. Rybníéek K. (1985). A Central-European approach to the classification of mire vegetation. Aquilo Ser. Bot. 21: 19–31Google Scholar
  60. Rybníéek K. and Rybníéková E. (1977). Mooruntersuchungen im oberen Gurgltal Ötztaler Alpen. Folia Geobotanica et Phytotaxonomica 12: 245–291Google Scholar
  61. Rybníéek K., Balátová-Tuláéková E. and Neuhäsl R. (1984). Přehled rostlinných spoleéenstev rašeliništ’ a mokřadních luk Československa. Studie ČSAV, Praha 1984/8: 1–123Google Scholar
  62. Schuster B. and Diekmann M. (2003). Changes in species density along the soil pH gradient – Evidence from German plant communities. Folia Geobotanica 38: 367–379CrossRefGoogle Scholar
  63. Sieben E.J.J., Boucher C. and Mucina L. (2004). Vegetation of high-altitude fens and restio marshlands of the Hottentots Holland Mountains, Western Cape, South Africa. Bothalia 34: 141–153Google Scholar
  64. Sjörs H. (1952). On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos 2: 241–258CrossRefGoogle Scholar
  65. Sjörs H. and Gunnarsson U. (2002). Calcium and pH in north and central Swedish mire waters. Journal of Ecology 90: 650–657CrossRefGoogle Scholar
  66. Sokal R.R. and Rohlf F.J. (1995). Biometry 3rd edition. W. H. Freeman and Company, New YorkGoogle Scholar
  67. Sparling J.H. (1966). Studies on the relationships between water movement and water chemistry in mires. Canadian Journal of Botany 44: 747–758Google Scholar
  68. Stehlik I. (2000). Nunataks and peripheral refugia for alpine plants during quaternary glaciation in the middle part of the Alps. Botanica Helvetica 110: 25–30Google Scholar
  69. Steiner G.M. (1992). Österreichischer Moorschutzkatalog. Grüne Reihe des BMUJF 1, WienGoogle Scholar
  70. Tahvanainen T. (2004). Water chemistry of mires in relation to the poor–rich vegetation gradient and contrasting geochemical zones of northeastern Fennoscandian Shield. Folia Geobotanica 39: 353–369CrossRefGoogle Scholar
  71. Tahvanainen T. and Tuomala T. (2003). The reliability of mire water pH measurements – a standard sampling protocol and implications to ecological theory. Wetlands 23: 701–708CrossRefGoogle Scholar
  72. Tahvanainen T., Sallantaus T., Heikkilä R. and Tolonen K. (2002). Spatial variation of mire surface water chemistry and vegetation in northeastern Finland. Annales Botanici Fennici 39: 235–251Google Scholar
  73. ter Braak C.J.F. and Šmilauer P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide. Software for Canonical Community Ordination (version 4.5). Biometris, Wageningen and Ćeské BudějoviceGoogle Scholar
  74. Tichý L. (2002). JUICE, software for vegetation classification. Journal of Vegetation Science 13: 451–453CrossRefGoogle Scholar
  75. Tichý L. (2005). New similarity indices for the assignment of relevés to the vegetation units of an existing phytosociological classification. Plant Ecology 179: 67–72CrossRefGoogle Scholar
  76. Tonkov S., Panovska H., Possnert G. and Bozilova E. (2002). The Holocene vegetation history of Northern Pirin Mountain, southwestern Bulgaria: pollen analysis and radiocarbon dating of a core from Lake Ribno Banderishko. The Holocene 12: 201–210CrossRefGoogle Scholar
  77. Valachovié M. (eds) (2001). Plant communities of Slovakia. 3. Wetland vegetation. Veda, BratislavaGoogle Scholar
  78. van der Maarel E. (1979). Transformation of cover-abundance in phytosociology and its effects on community similarity. Vegetatio 39: 97–114CrossRefGoogle Scholar
  79. van der Welle M.E.W., Vermeulen P.J., Shaver G.R., Berendse F. (2003). Factors determining plant species richness in Alaskan arctic tundra. Journal of Vegetation Science 14: 711–720CrossRefGoogle Scholar
  80. Vitt D.H. (2000). Peatlands: ecosystems dominated by bryophytes. In: Shaw A.J. and Goffinet B. (eds) Bryophyte Biology. Cambridge University Press, Cambridge, pp. 312–343Google Scholar
  81. Vitt D.H., Bayley S.E. and Jin T.L. (1995). Seasonal variation in water chemistry over a bog-rich fen gradient in Continental Western Canada. Canadian Journal of Fisheries and Aquatic Sciences 52: 587–606CrossRefGoogle Scholar
  82. Wheeler B.D. and Proctor M.C.F. (2000). Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187–203CrossRefGoogle Scholar
  83. Willner W. (2002). Syntaxonomische Revision der suedmitteleuropaeschen Buchenwaelder. Phytocoenologia 32: 337–453CrossRefGoogle Scholar
  84. Zechmeister H. and Mucina L. (1994). Vegetation of European springs - high-rank syntaxa of the Montio-Cardaminetea. Journal of Vegetation Science 5: 385–402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Petra Hájková
    • 1
    • 2
  • Michal Hájek
    • 1
    • 2
  • Iva Apostolova
    • 3
  1. 1.Department of Botany, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Ecology, Institute of BotanyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  3. 3.Department of Phytocoenology and Ecology, Institute of BotanyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations