Abdollahpouri, H.: Popularity bias in ranking and recommendation. In: The 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp. 27–28 (2019). https://doi.org/10.1145/3306618.3314309
Agarwal, A., Wang, X., Li, C., Bendersky, M., Najork, M.: Addressing trust bias for unbiased learning-to-rank. In: The World Wide Web Conference, pp. 4–14 (2019)
Ailon, N., Karnin, Z., Joachims, T.: Reducing dueling bandits to cardinal bandits. In: International Conference on Machine Learning, pp. 856–864 (2014)
Baeza-Yates, R.: Bias on the web. Commun. ACM 61(6), 54–61 (2018)
Article
Google Scholar
Baeza-Yates, R.: Bias in search and recommender systems. In: Fourteenth ACM Conference on Recommender Systems, RecSys ’20, p. 2 (2020). https://doi.org/10.1145/3383313.3418435
Balog, M., Tripuraneni, N., Ghahramani, Z., Weller, A.: Lost relatives of the Gumbel trick. In: Proceedings of the 34th International Conference on Machine Learning, ICML’17, vol. 70, pp. 371–379 (2017)
Basilico, J.: Recent trends in personalization: a Netflix perspective. In: ICML 2019 Workshop on Adaptive and Multitask Learning. ICML (2019)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
MATH
Google Scholar
Bradley, R.A., Terry, M.E.: Rank analysis of incomplete block designs: I the method of paired comparisons. Biometrika 39(3/4), 324–345 (1952)
MathSciNet
Article
Google Scholar
Busa-Fekete, R., Szorenyi, B., Cheng, W., Weng, P., Hüllermeier, E.: Top-k selection based on adaptive sampling of noisy preferences. In: International Conference on Machine Learning, pp. 1094–1102 (2013)
Busa-Fekete, R., Hüllermeier, E., Szörényi, B.: Preference-based rank elicitation using statistical models: the case of mallows. In: Proceedings of The 31st International Conference on Machine Learning, vol. 32 (2014)
Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd Workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM Conference on Recommender Systems, RecSys 2011. ACM, New York, NY, USA (2011)
Carlson, B.C.: Appell functions and multiple averages. SIAM J. Math. Anal. 2(3), 420–430 (1971). https://doi.org/10.1137/0502040
MathSciNet
Article
MATH
Google Scholar
Caron, F., Doucet, A.: Efficient Bayesian inference for generalized Bradley–Terry models. J. Comput. Graph. Stat. 21(1), 174–196 (2012)
MathSciNet
Article
Google Scholar
Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., Riddell, A.: Stan: A probabilistic programming language. J. Stat. Softw. 76(1) (2017)
Çapan, G., Bozal, Ö., Gündoğdu, İ., Cemgil, A.T.: Towards fair personalization by avoiding feedback loops. In: NeurIPS 2019 Workshop on Human-Centric Machine Learning (2019)
Chakrabarti, D., Kumar, R., Radlinski, F., Upfal, E.: Mortal multi-armed bandits. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds) Advances in Neural Information Processing Systems, vol. 21 (2009)
Chaney, A.J.B., Stewart, B.M., Engelhardt, B.E.: How algorithmic confounding in recommendation systems increases homogeneity and decreases utility. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 224–232 (2018). https://doi.org/10.1145/3240323.3240370
Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. arXiv:2010.03240 (2020)
Chopin, N.: A sequential particle filter method for static models. Biometrika 89(3), 539–552 (2002)
MathSciNet
Article
Google Scholar
Chuklin, A., Markov, I., de Rijke, M.: Click models for web search. Synth. Lect. Inf. Concepts Retr. Serv. 7(3), 1–115 (2015). https://doi.org/10.2200/S00654ED1V01Y201507ICR043
Article
Google Scholar
Covington, P., Adams, J., Sargin, E.: Deep neural networks for YouTube recommendations. In: Proceedings of the 10th ACM Conference on Recommender Systems, New York, NY, USA (2016). https://doi.org/10.1145/2959100.2959190
Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click position-bias models. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, pp. 87–94. ACM (2008)
Davidson, R.R., Solomon, D.L.: A Bayesian approach to paired comparison experimentation. Biometrika 60(3), 477–487 (1973)
MathSciNet
Article
Google Scholar
Dickey, J.M.: Multiple hypergeometric functions: probabilistic interpretations and statistical uses. J. Am. Stat. Assoc. 78(383), 628–637 (1983). https://doi.org/10.2307/2288131
MathSciNet
Article
MATH
Google Scholar
Dickey, J.M., Jiang, J., Kadane, J.B.: Bayesian methods for censored categorical data. J. Am. Stat. Assoc. 82(399), 773–781 (1987). https://doi.org/10.2307/2288786
MathSciNet
Article
MATH
Google Scholar
Doucet, A., Johansen, A.: A tutorial on particle filtering and smoothing: Fifteen years later (01, 2008)
Duane, S., Kennedy, A.D., Pendleton, B.J., Duncan, R.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987). https://doi.org/10.1016/0370-2693(87)91197-X
MathSciNet
Article
Google Scholar
Ermis, B., Ernst, P., Stein, Y., Zappella, G.: Learning to rank in the position based model with bandit feedback. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 2405–2412 (2020)
Falahatgar, M., Orlitsky, A., Pichapati, V., Suresh, A.T.: Maximum selection and ranking under noisy comparisons. In: International Conference on Machine Learning, pp. 1088–1096 (2017)
Gentile, C., Li, S., Zappella, G.: Online clustering of bandits. In: Proceedings of the 31st International Conference on International Conference on Machine Learning, vol. 32, pp. II–757 (2014)
Gilks, W.R., Best, N.G., Tan, K.K.C.: Adaptive rejection Metropolis sampling within Gibbs sampling. J. R. Stat. Soc. Ser. C Appl. Stat. 44(4), 455–472 (1995)
MATH
Google Scholar
Gopalan, A., Mannor, S., Mansour, Y.: Thompson sampling for complex online problems. In: Proceedings of the 31st International Conference on Machine Learning, pp. 100–108 (2014)
Guiver, J., Snelson, E.: Bayesian inference for Plackett–Luce ranking models. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 377–384. ACM (2009)
Gumbel, E.J.: Statistical theory of extreme values and some practical applications: a series of lectures. Technical Report (1954)
Gündoğdu, İ: Sequential Monte Carlo approach to inference in Bayesian choice models. Master’s Thesis, Bogazici University, (2019). https://github.com/ilkerg/preference-sampler/raw/master/thesis.pdf
Hankin, R.K.S.: A generalization of the Dirichlet distribution. J. Stat. Softw. 33(11), 1–18 (2010). https://doi.org/10.18637/jss.v033.i11
Article
Google Scholar
Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004). https://doi.org/10.1145/963770.963772
Article
Google Scholar
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272 (2008). https://doi.org/10.1109/ICDM.2008.22
Hunter, D.R.: MM Algorithms for generalized Bradley–Terry models. Ann. Stat. 32(1), 384–406 (2004). https://doi.org/10.1214/aos/1079120141
MathSciNet
Article
MATH
Google Scholar
Jamieson, K.G., Nowak, R.: Active ranking using pairwise comparisons. In: Advances in Neural Information Processing Systems, pp. 2240–2248 (2011)
Jiang, R., Chiappa, S., Lattimore, T., Agyorgy, A., Kohli, P.: Degenerate feedback loops in recommender systems. In: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (2019). https://doi.org/10.1145/3306618.3314288
Jiang, T.J., Kadane, J.B., Dickey, J.M.: Computation of Carlson’s multiple hypergeometric function R for Bayesian applications. J. Comput. Graph. Stat. 1(3), 231–251 (1992). https://doi.org/10.1080/10618600.1992.10474583
MathSciNet
Article
Google Scholar
Joachims, T., Raimond, Y., Koch, O., Dimakopoulou, M., Vasile, F., Swaminathan, A.: Reveal 2020: Bandit and reinforcement learning from user interactions. In: Fourteenth ACM Conference on Recommender Systems, RecSys ’20, pp. 628–629 (2020). https://doi.org/10.1145/3383313.3411536
Kawale, J., Bui, H.H., Kveton, B., Tran-Thanh, L., Chawla, S.: Efficient Thompson sampling for online matrix-factorization recommendation. In: Advances in Neural Information Processing Systems, pp. 1297–1305 (2015)
Komiyama, J., Qin, T.: Time-decaying bandits for non-stationary systems. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) Web and Internet Economics, pp. 460–466. Springer International Publishing, Cham (2014)
Chapter
Google Scholar
Komiyama, J., Honda, J., Kashima, H., Nakagawa, H.: Regret lower bound and optimal algorithm in dueling bandit problem. In: Conference on Learning Theory, pp. 1141–1154 (2015)
Komiyama, J., Honda, J., Nakagawa, H.: Copeland dueling bandit problem: regret lower bound, optimal algorithm, and computationally efficient algorithm. In: International Conference on Machine Learning, pp. 1235–1244 (2016)
Komiyama, J., Honda, J., Takeda, A.: Position-based multiple-play bandit problem with unknown position bias. Adv. Neural Inf. Process. Syst. 30, 4998–5008 (2017)
Google Scholar
Kveton, B., Szepesvári, C., Wen, Z., Ashkan, A.: Cascading bandits: learning to rank in the cascade model. In: Proceedings of the 32nd International Conference on International Conference on Machine Learning, vol. 37, pp. 767–776 (2015a)
Kveton, B., Wen, Z. , Ashkan, A., Szepesvári, C.: Combinatorial cascading bandits. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 1, pp. 1450–1458 (2015b)
Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press (2020). https://doi.org/10.1017/9781108571401
Lattimore, T., Kveton, B., Li, S., Szepesvári, C.: Toprank: A practical algorithm for online stochastic ranking. In: Advances in Neural Information Processing Systems, pp. 3949–3958 (2018)
Leonard, T.: An alternative Bayesian approach to the Bradley–Terry model for paired comparisons. Biometrics 33, 121–132 (1977). https://doi.org/10.2307/2529308
MathSciNet
Article
MATH
Google Scholar
Levine, N., Crammer, K., Mannor, S.: Rotting bandits. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 3077–3086 (2017)
Li, S., Karatzoglou, A., Gentile, C.: Collaborative filtering bandits. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 539–548 (2016)
Liang, D., Charlin, L., Blei, D.M.: Causal inference for recommendation. In: UAI Workshop on Causation: Foundation to Application (2016a)
Liang, D., Charlin, L., McInerney, J., Blei, D.M.: Modeling user exposure in recommendation. In: Proceedings of the 25th International Conference on World Wide Web, WWW ’16, pp. 951–961 (2016b). https://doi.org/10.1145/2872427.2883090
Liang, D., Krishnan, R.G., Hoffman, M.D., Jebara, T.: Variational autoencoders for collaborative filtering. In: Proceedings of the 2018 World Wide Web Conference, WWW ’18. International World Wide Web Conferences Steering Committee, pp. 689–698 (2018). https://doi.org/10.1145/3178876.3186150
Liu, T.-Y.: Learning to rank for information retrieval. Found. Trends® Inf.Retri. 3(3), 225–331 (2009)
Liu, Y., Li, L.: A map of bandits for e-commerce. In: KDD 2021 Workshop on Multi-Armed Bandits and Reinforcement Learning: Advancing Decision Making in E-Commerce and Beyond (2021)
Ducan Luce, R.: Individual Choice Behavior. Wiley, Hoboken (1959)
Google Scholar
Mehrotra, R., McInerney, J., Bouchard, H., Lalmas, M., Diaz, F.: Towards a fair marketplace: counterfactual evaluation of the trade-off between relevance, fairness and satisfaction in recommendation systems. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2243–2251. ACM (2018). https://doi.org/10.1145/3269206.3272027
Mohajer, S., Suh, C., Elmahdy, A.: Active learning for top-\(k\) rank aggregation from noisy comparisons. In: International Conference on Machine Learning, pp. 2488–2497 (2017)
Neal, R.M.: Slice sampling. Ann. Stat. 31(3), 705–767 (2003)
MathSciNet
Article
Google Scholar
Nie, X., Tian, X., Taylor, J., Zou, J.: Why adaptively collected data have negative bias and how to correct for it. In: International Conference on Artificial Intelligence and Statistics, pp. 1261–1269 (2018)
Pariser, E.: The filter bubble: What the internet is hiding from you. Penguin, UK (2011)
Plackett, R.L.: The analysis of permutations. Appl. Stat. pp. 193–202 (1975)
Pearl, P., Chen, L., Rong, H.: Evaluating recommender systems from the user’s perspective: survey of the state of the art. User Model. User-Adapt. Interact. 22(4–5), 317–355 (2012). https://doi.org/10.1007/s11257-011-9115-7
Regenwetter, M., Dana, J., Davis-Stober, C.P.: Transitivity of preferences. Psychol. Rev. 118(1), 42 (2011). https://doi.org/10.1037/a0021150
Article
Google Scholar
Russo, D.J., Van Roy, B., Kazerouni, A., Osband, I., Wen, Z.: A tutorial on Thompson sampling. Found. Trends® Mach. Learn. 11(1), 1–96 (2018)
Saha, A., Gopalan, A.: Battle of bandits. In: Proceedings of the Thirty-Forth Conference on Uncertainty in Artificial Intelligence, UAI, pp. 06–10 (2018)
Saha, A., Gopalan, A.: Combinatorial bandits with relative feedback. In: Advances in Neural Information Processing Systems, pp. 983–993 (2019)
Schmit, S., Riquelme, C.: Human interaction with recommendation systems. In: Proceedings of the 21th International Conference on Artificial Intelligence and Statistics (2018)
Schnabel, T., Swaminathan, A., Singh, A., Chandak, N., Joachims, T.: Recommendations as treatments: debiasing learning and evaluation. In: International Conference on Machine Learning, pp. 1670–1679 (2016)
Sinha, A., Gleich, D.F., Ramani, K.: Deconvolving feedback loops in recommender systems. In: Advances in Neural Information Processing Systems, pp. 3243–3251 (2016)
Sopher, B.: Intransitive cycles: rational choice or random error? An answer based on estimation of error rates with experimental data. Theor. Decis. 35(3), 311–336 (1993). https://doi.org/10.1007/BF01075203
MathSciNet
Article
MATH
Google Scholar
Sui, Y., Zhuang, V., Burdick, J.W., Yue, Y.: Multi-dueling bandits with dependent arms. In: Proceedings of the Thirty-Forth Conference on Uncertainty in Artificial Intelligence, UAI (2017)
Sui, Y., Zoghi, M., Hofmann, K., Yue, Y.: Advancements in dueling bandits. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 5502–5510 (2018). https://doi.org/10.24963/ijcai.2018/776
Sun, W., Khenissi, S., Nasraoui, O., Shafto, P.: Debiasing the human-recommender system feedback loop in collaborative filtering. In: Companion Proceedings of the 2019 World Wide Web Conference, WWW ’19, pp.645–651. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3308560.3317303
Szörényi, B., Busa-Fekete, R., Paul, A., Hüllermeier, E.: Online Rank elicitation for Plackett-Luce: a dueling bandits approach. In: Advances in Neural Information Processing Systems, pp. 604–612 (2015)
Thompson, W.R.: On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25(3/4), 285–294 (1933)
Article
Google Scholar
Urvoy, T., Clerot, F., Féraud, R., Naamane, S.: Generic exploration and k-armed voting bandits. In: International Conference on Machine Learning, pp. 91–99 (2013)
Wang, Y., Liang, D., Charlin, L., Blei, D.M.: Causal inference for recommender systems. In: Fourteenth ACM Conference on Recommender Systems, RecSys ’20, pp. 426–431 (2020). https://doi.org/10.1145/3383313.3412225
Wu, H., Liu, X.: Double Thompson sampling for dueling bandits. In: Advances in Neural Information Processing Systems, pp. 649–657 (2016)
Yang, S.-H., Long, B., Smola, A.J., Zha, H., Zheng, Z.: Collaborative competitive filtering: learning recommender using context of user choice. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 295–304. ACM (2011). https://doi.org/10.1145/2009916.2009959
Yellott, J.I., Jr.: The relationship between Luce’s choice axiom, Thurstone’s theory of comparative judgment, and the double exponential distribution. J. Math. Psychol. 15(2), 109–144 (1977)
MathSciNet
Article
Google Scholar
Yue, Y., Joachims, T.: Beat the mean bandit. In: International Conference on Machine Learning, pp. 241–248 (2011)
Yue, Y., Broder, J., Kleinberg, R.: The k-armed dueling bandits problem. J. Comput. Syst. Sci. 78(5), 1538–1556 (2012). https://doi.org/10.1016/j.jcss.2011.12.028
MathSciNet
Article
MATH
Google Scholar
Zhao, X., Zhang, W., Wang, J.: Interactive collaborative filtering. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp. 1411–1420 (2013)
Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison Wesley Press Inc, Pearson (1949)
Google Scholar
Zoghi, M., Whiteson, S., Munos, R., Rijke, M.: Relative upper confidence bound for the k-armed dueling bandit problem. In: International Conference on Machine Learning, pp. 10–18 (2014a)
Zoghi, M., Whiteson, S.A., De Rijke, M., Munos, R.: Relative confidence sampling for efficient on-line ranker evaluation. In: ACM International Conference on Web Search and Data Mining, pp. 73–82 (2014b). https://doi.org/10.1145/2556195.2556256
Zoghi, M., Karnin, Z.S., Whiteson, S., De Rijke, M.: Copeland dueling bandits. In: Advances in Neural Information Processing Systems, pp. 307–315 (2015)
Zoghi, M., Tunys, T., Ghavamzadeh, M., Kveton, B., Szepesvari, C., Wen, Z.: Online learning to rank in stochastic click models. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 4199–4208 (2017)
Zong, S., Ni, H., Sung, K., Ke, N.R., Wen, Z., Kveton, B.: UAI, Cascading bandits for large-scale recommendation problems (2016)