Personalized weight loss strategies by mining activity tracker data

Abstract

Wearable devices make self-monitoring easier by the users, who usually tend to increase physical activity and weight loss maintenance over time. But in terms of behavior adaptation to these goals, these devices do not provide specific features beyond monitoring the achievement of daily goals, such as a number of steps or miles walked and caloric outtake. The purpose of this study is twofold. By analyzing a large dataset of signals collected by these devices, we identify significant clusters of similar behavior patterns related to user physical activities. We then examine specific patterns of step count in the context of recommendation of habits that more likely give rise to weight loss effects. The evaluation of the effectiveness of these personalized recommendations, based on a comparative study, proves how a recommender system based on the reinforcement learning paradigm is able to guarantee better performance for this task by balancing the trade-off between long-term and short-term rewards.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R., Tudor-Locke, C., Greer, J.L., Vezina, J., Whitt-Glover, M.C., Leon, A.S.: 2011 compendium of physical activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43(8), 1575–1581 (2011)

    Google Scholar 

  2. Althoff, T.: Population-scale pervasive health. IEEE Pervasive Comput. 16(4), 75–79 (2017). https://doi.org/10.1109/MPRV.2017.3971134

    Article  Google Scholar 

  3. Althoff, T., White, R.W., Horvitz, E.: Influence of pokémon go on physical activity: study and implications. J. Med. Internet Res. 18(12), e315 (2016)

    Google Scholar 

  4. Althoff, T., Sosic, R., Hicks, J.L., King, A.C., Delp, S.L., Leskovec, J.: Large-scale physical activity data reveal worldwide activity inequality. Nature 547, 336 (2017). https://doi.org/10.1038/nature23018. EP –

    Article  Google Scholar 

  5. Baranowski, T.: Validity and reliability of self report measures of physical activity: an information-processing perspective. Res. Q. Exerc. Sport 59(4), 314–327 (1988). https://doi.org/10.1080/02701367.1988.10609379

    Article  Google Scholar 

  6. Baron, J.: Nudge: Improving decisions about health, wealth, and happiness. Thaler, Richard H. & Sunstein, Cass R. (Eds.). Yale University Press: New haven, CT, 2008 (2010). https://yalebooks.yale.edu/book/9780300122237/nudge

  7. Berkovsky, S., Freyne, J., Coombe, M.: Physical activity motivating games: be active and get your own reward. ACM Trans. Comput. Hum. Interact. 19(4), 32:1–32:41 (2012)

    Google Scholar 

  8. Bhaskaran, K., dos Santos-Silva, I., Leon, D.A., Douglas, I.J., Smeeth, L.: Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3.6 million adults in the UK. Lancet Diabetes Endocrinol. 6(12), 944–953 (2018). https://doi.org/10.1016/S2213-8587(18)30288-2

    Article  Google Scholar 

  9. Bravata, D.M., Smith-Spangler, C., Sundaram, V., Gienger, A.L., Lin, N., Lewis, R., Stave, C.D., Olkin, I., Sirard, J.R.: Using pedometers to increase physical activity and improve health: a systematic review. JAMA 298(19), 2296–2304 (2007)

    Google Scholar 

  10. Brodie, M., Pliner, E., Ho, A., Li, K., Chen, Z., Gandevia, S., Lord, S.: Big data vs. accurate data in health research: large-scale physical activity monitoring, smartphones, wearable devices and risk of unconscious bias. Med. Hypotheses 119, 32–36 (2018). https://doi.org/10.1016/j.mehy.2018.07.015

    Article  Google Scholar 

  11. Bulling, A., Blanke, U., Schiele, B.: A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46(3), 33:1–33:33 (2014). https://doi.org/10.1145/2499621

    Article  Google Scholar 

  12. Catenacci, V.A., Ogden, L.G., Stuht, J., Phelan, S., Wing, R.R., Hill, J.O., Wyatt, H.R.: Physical activity patterns in the national weight control registry. Obesity 16(1), 153–161 (2008)

    Google Scholar 

  13. Chekroud, S.R., Gueorguieva, R., Zheutlin, A.B., Paulus, M., Krumholz, H.M., Krystal, J.H., Chekroud, A.M.: Association between physical exercise and mental health in 1.2 million individuals in the USA between 2011 and 2015: a cross-sectional study. Lancet Psychiatry (2018). https://doi.org/10.1016/S2215-0366(18)30227-X

    Article  Google Scholar 

  14. Connolly, J., Romano, T., Patruno, M.: Effects of dieting and exercise on resting metabolic rate and implications for weight management. Fam. Pract. 16(2), 196–201 (1999). https://doi.org/10.1093/fampra/16.2.196

    Article  Google Scholar 

  15. Dehghan, M., Merchant, A.T.: Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr. J. 7, 26 (2008)

    Google Scholar 

  16. Demura, S., Sato, S.: Comparisons of accuracy of estimating percent body fat by four bioelectrical impedance devices with different frequency and induction system of electrical current. J. Sports Med. Phys. Fit. 55(1–2), 68–75 (2015)

    Google Scholar 

  17. Doherty, A., Jackson, D., Hammerla, N., Plötz, T., Olivier, P., Granat, M.H., White, T., van Hees, V.T., Trenell, M.I., Owen, C.G., Preece, S.J., Gillions, R., Sheard, S., Peakman, T., Brage, S., Wareham, N.J.: Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. PLOS ONE 12(2), 1–14 (2017). https://doi.org/10.1371/journal.pone.0169649

    Article  Google Scholar 

  18. Evenson, K.R., Goto, M.M., Furberg, R.D.: Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 12(1), 159 (2015). https://doi.org/10.1186/s12966-015-0314-1

    Article  Google Scholar 

  19. Ferguson, T., Rowlands, A.V., Olds, T., Maher, C.: The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 12, 42 (2015)

    Google Scholar 

  20. Finkelstein, E.A., Haaland, B.A., Bilger, M., Sahasranaman, A., Sloan, R.A., Nang, E.E.K., Evenson, K.R.: Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. 4(12), 983–995 (2016). https://doi.org/10.1016/S2213-8587(16)30284-4

    Article  Google Scholar 

  21. Fukuoka, Y., Zhou, M., Vittinghoff, E., Haskell, W., Goldberg, K., Aswani, A.: Objectively measured baseline physical activity patterns in women in the mPED trial: cluster analysis. JMIR Public Health Surveill. 4(1), e10 (2018)

    Google Scholar 

  22. Gilbert, R.O.: Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Co., New York (1987). (includes index)

    Google Scholar 

  23. Graells-Garrido, E., Ferres, L., Bravo, L.: The effect of pokémon go on the pulse of the city: a natural experiment (2016). arXiv:1610.08098

  24. Greenlaw, R., Kantabutra, S.: Survey of clustering: algorithms and applications. Int. J. Inf. Retr. Res. 3(2), 1–29 (2013)

    Google Scholar 

  25. Jakicic, J., Clark, K., Coleman, E., Donnelly, J., Foreyt, J., Melanson, E., Volek, J., Volpe, S., American College of Sports Medicine: American college of sports medicine position stand. Appropriate intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 33(12), 2145–2156 (2001)

    Google Scholar 

  26. Jakicic, J.M., Davis, K.K., Rogers, R.J., King, W.C., Marcus, M.D., Helsel, D., Rickman, A.D., Wahed, A.S., Belle, S.H.: Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA 316(11), 1161–1171 (2016a)

    Google Scholar 

  27. Jakicic, J.M., Davis, K.K., Rogers, R.J., King, W.C., Marcus, M.D., Helsel, D., Rickman, A.D., Wahed, A.S., Belle, S.H.: Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the idea randomized clinical trial. JAMA 316(11), 1161–1171 (2016b)

    Google Scholar 

  28. Kamišalić, A., Fister, I., Turkanović, M., Karakatič, S.: Sensors and functionalities of non-invasive wrist-wearable devices: a review. Sensors 18(6), 1714 (2018). https://doi.org/10.3390/s18061714

    Article  Google Scholar 

  29. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster analysis. Wiley, New York (1990)

    Google Scholar 

  30. King, N.A., Caudwell, P., Hopkins, M., Byrne, N.M., Colley, R., Hills, A.P., Stubbs, J.R., Blundell, J.E.: Metabolic and behavioral compensatory responses to exercise interventions: barriers to weight loss. Obesity 15(6), 1373–1383 (2007). https://doi.org/10.1038/oby.2007.164

    Article  Google Scholar 

  31. Konopka, A.R., Harber, M.P.: Skeletal muscle hypertrophy after aerobic exercise training. Exerc. Sport Sci. Rev. 42(2), 53–61 (2014)

    Google Scholar 

  32. Leijdekkers, P., Gay, V.: Improving user engagement by aggregating and analysing health and fitness data on a mobile app. In: Geissbühler, A., Demongeot, J., Mokhtari, M., Abdulrazak, B., Aloulou, H. (eds.) Inclusive Smart Cities and e-Health, pp. 325–330. Springer, Cham (2015)

    Google Scholar 

  33. Lewis, Z.H., Lyons, E.J., Jarvis, J.M., Baillargeon, J.: Using an electronic activity monitor system as an intervention modality: a systematic review. BMC Public Health 15, 585 (2015)

    Google Scholar 

  34. Liebman, E., Saar-Tsechansky, M., Stone, P.: Dj-mc: a reinforcement-learning agent for music playlist recommendation. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 591–599 (2015)

  35. Lim, W.K., Davila, S., Teo, J.X., Yang, C., Pua, C.J., Blöcker, C., Lim, J.Q., Ching, J., Yap, J.J.L., Tan, S.Y., Sahlén, A., Chin, C.W.L., Teh, B.T., Rozen, S.G., Cook, S.A., Yeo, K.K., Tan, P.: Beyond fitness tracking: the use of consumer-grade wearable data from normal volunteers in cardiovascular and lipidomics research. PLOS Biol. 16(2), 1–18 (2018). https://doi.org/10.1371/journal.pbio.2004285

    Article  Google Scholar 

  36. Lung, N.H., Institute, B.: Classification of overweight and obesity by BMI, waist circumference, and associated disease risks (2018). https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi_dis.htm. Accessed 1 May 2018

  37. Maier, E., Reimer, U., Laurenzi, E., Ridinger, M., Ulmer, T.: Smartcoping—a mobile solution for stress recognition and prevention. In: Bienkiewicz, M., Verdier, C., Plantier, G., Schultz, T., Fred, A.L.N., Gamboa, H. (eds.) HEALTHINF 2014—Proceedings of the International Conference on Health Informatics, ESEO, Angers, Loire Valley, France, 3–6 March, 2014, pp. 428–433. SciTePress (2014)

  38. Majumder, S., Mondal, T., Deen, M.J.: Wearable sensors for remote health monitoring. Sensors (Basel) 17(1), 130 (2017)

    Google Scholar 

  39. Martin, S.S., Feldman, D.I., Blumenthal, R.S., Jones, S.R., Post, W.S., McKibben, R.A., Michos, E.D., Ndumele, C.E., Ratchford, E.V., Coresh, J., Blaha, M.J.: mActive: a randomized clinical trial of an automated mHealth intervention for physical activity promotion. J. Am. Heart Assoc. 4(11), e002239 (2015)

    Google Scholar 

  40. McDaniel, M., Anwar, M.: Zen\_space: a smartphone app for individually tailored stress management support for college students. In: Chen, H., Zeng, D.D., Karahanna, E., Bardhan, I. (eds.) Smart Health: International Conference, ICSH 2017, Hong Kong, China, June 26–27, 2017, Proceedings, pp. 123–133. Springer, Cham (2017)

  41. Melanson, E.L., Keadle, S.K., Donnelly, J.E., Braun, B., King, N.A.: Resistance to exercise-induced weight loss: compensatory behavioral adaptations. Med. Sci. Sports Exerc. 45(8), 1600–1609 (2013)

    Google Scholar 

  42. Mirkin, B.: Choosing the number of clusters. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(3), 252–260 (2011)

    MathSciNet  Google Scholar 

  43. Oyibo, K., Adaji, I., Orji, R., Olabenjo, B., Azizi, M., Vassileva, J.: Perceived persuasive effect of behavior model design in fitness apps. In: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, pp. 219–228. ACM, New York, NY, USA, UMAP’18 (2018). https://doi.org/10.1145/3209219.3209240

  44. Pantelopoulos, A., Bourbakis, N.: A survey on wearable biosensor systems for health monitoring. In: 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4887–4890. IEEE (2008)

  45. Patel, S.R., Hu, F.B.: Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 16(3), 643–653 (2008)

    Google Scholar 

  46. Pontzer, H., Durazo-Arvizu, R., Dugas, L.R., Plange-Rhule, J., Bovet, P., Forrester, T.E., Lambert, E.V., Cooper, R.S., Schoeller, D.A., Luke, A.: Constrained total energy expenditure and metabolic adaptation to physical activity in adult humans. Curr. Biol. 26(3), 410–417 (2016)

    Google Scholar 

  47. Rabbi, M., Aung, M.H., Zhang, M., Choudhury, T.: Mybehavior: automatic personalized health feedback from user behaviors and preferences using smartphones. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 707–718. ACM, New York, NY, USA, UbiComp’15 (2015). https://doi.org/10.1145/2750858.2805840

  48. Reimer, U., Maier, E.: An application framework for personalised and adaptive behavioural change support systems. In: Röcker, C., Ziefle, M., O’Donoghue, J., Maciaszek, L.A., Molloy, W. (eds.) Proceedings of the 2nd International Conference on Information and Communication Technologies for Ageing Well and e-Health, ICT4AgeingWell 2016, Rome, Italy, April 21–22, 2016, pp. 152–159. SCITEPRESS (2016)

  49. Reimer, U., Laurenzi, E., Maier, E., Ulmer, T.: Mobile stress recognition and relaxation support with smartcoping: user-adaptive interpretation of physiological stress parameters. In: 50th Hawaii International Conference on System Sciences, HICSS 2017, Hilton Waikoloa Village, Hawaii, USA, January 4–7, 2017, AIS Electronic Library (AISeL) (2017)

  50. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook, 1st edn. Springer, Berlin (2010)

    Google Scholar 

  51. Rolls, B.J., Drewnowski, A., Ledikwe, J.H.: Changing the energy density of the diet as a strategy for weight management. J. Am. Diet Assoc. 105(5 Suppl 1), 98–103 (2005)

    Google Scholar 

  52. Romieu, I., Dossus, L., Barquera, S., Blottière, H.M., Franks, P.W., Gunter, M., Hwalla, N., Hursting, S.D., Leitzmann, M., Margetts, B., Nishida, C., Potischman, N., Seidell, J., Stepien, M., Wang, Y., Westerterp, K., Winichagoon, P., Wiseman, M., Willett, W.C.: Energy balance and obesity: what are the main drivers? Cancer Causes Control 28(3), 247–258 (2017)

    Google Scholar 

  53. Sallis, J.F., Saelens, B.E.: Assessment of physical activity by self-report: status, limitations, and future directions. Res. Q. Exerc. Sport 71(2 Suppl), 1–14 (2000)

    Google Scholar 

  54. Schäfer, H., Hors-Fraile, S., Karumur, R.P., Calero Valdez, A., Said, A., Torkamaan, H., Ulmer, T., Trattner, C.: Towards health (aware) recommender systems. In: Proceedings of the 2017 International Conference on Digital Health, pp. 157–161. ACM, New York, NY, USA, DH’17 (2017)

  55. Shameli, A., Althoff, T., Saberi, A., Leskovec, J.: How gamification affects physical activity: Large-scale analysis of walking challenges in a mobile application. In: Proceedings of the 26th International Conference on World Wide Web Companion (WWW), pp. 455–463 (2017)

  56. Shani, G., Gunawardana, A.: Evaluating Recommendation Systems, pp. 257–297. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_8

    Google Scholar 

  57. Smyth, B., Cunningham, P.: Marathon race planning: a case-based reasoning approach. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, pp. 5364–5368 (2018). https://doi.org/10.24963/ijcai.2018/754

  58. Straiton, N., Alharbi, M., Bauman, A., Neubeck, L., Gullick, J., Bhindi, R., Gallagher, R.: The validity and reliability of consumer-grade activity trackers in older, community-dwelling adults: a systematic review. Maturitas 112, 85–93 (2018). https://doi.org/10.1016/j.maturitas.2018.03.016

    Article  Google Scholar 

  59. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)

    Google Scholar 

  60. Swift, D.L., Johannsen, N.M., Lavie, C.J., Earnest, C.P., Church, T.S.: The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 56(4), 441–448 (2014)

    Google Scholar 

  61. Tang, L.M., Meyer, J., Epstein, D.A., Bragg, K., Engelen, L., Bauman, A., Kay, J.: Defining adherence: making sense of physical activity tracker data. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 37:1–37:22 (2018). https://doi.org/10.1145/3191769

    Article  Google Scholar 

  62. Thibault, R., Genton, L.: Accuracy of bioelectrical impedance analysis to measure skeletal muscle mass. Clin. Nutr. 33(6), 1157 (2014). https://doi.org/10.1016/j.clnu.2014.08.004

    Article  Google Scholar 

  63. Thomson, C., Nash, J., Maeder, A.: Persuasive design for behaviour change apps: issues for designers. In: Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists, pp. 43:1–43:10. ACM, New York, NY, USA, SAICSIT’16 (2016). https://doi.org/10.1145/2987491.2987535

  64. Vildjiounaite, E., Kallio, J., Kyllönen, V., Nieminen, M., Määttänen, I., Lindholm, M., Mäntyjärvi, J., Gimel’farb, G.: Unobtrusive stress detection on the basis of smartphone usage data. Pers. Ubiquitous Comput. 22(4), 671–688 (2018). https://doi.org/10.1007/s00779-017-1108-z

    Article  Google Scholar 

  65. Watkins, C.J.C.H., Dayan, P.: Q-learning. Mach. Learn. 8(3), 279–292 (1992)

    MATH  Google Scholar 

  66. Watson, N.F., Badr, M.S., Belenky, G., Bliwise, D.L., Buxton, O.M., Buysse, D., Dinges, D.F., Gangwisch, J., Grandner, M.A., Kushida, C., Malhotra, R.K., Martin, J.L., Patel, S.R., Quan, S.F., Tasali, E.: Joint consensus statement of the American academy of sleep medicine and sleep research society on the recommended amount of sleep for a healthy adult: methodology and discussion. J. Clin. Sleep Med. 11(8), 931–952 (2015)

    Google Scholar 

  67. Wiesner, M., Pfeifer, D.: Health recommender systems: concepts, requirements, technical basics and challenges. Int. J. Environ. Res. Public Health 11(3), 2580–2607 (2014)

    Google Scholar 

  68. Wing, R.R., Phelan, S.: Long-term weight loss maintenance. Am. J. Clin. Nutr. 82(1), 222S–225S (2005). https://doi.org/10.1093/ajcn/82.1.222S

    Article  Google Scholar 

  69. World Health Organization: Global Recommendations on Physical Activity for Health. World Health Organization, Geneva (2010)

    Google Scholar 

  70. Yom-Tov, E., Feraru, G., Kozdoba, M., Mannor, S., Tennenholtz, M., Hochberg, I.: Encouraging physical activity in patients with diabetes: intervention using a reinforcement learning system. J. Med. Internet Res. 19(10), e338 (2017)

    Google Scholar 

  71. Zhao, Y., Kosorok, M.R., Zeng, D.: Reinforcement learning design for cancer clinical trials. Stat. Med. 28(26), 3294–3315 (2009). https://doi.org/10.1002/sim.3720

    MathSciNet  Article  Google Scholar 

  72. Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N.J., Xie, X., Li, Z. (2018) Drn: a deep reinforcement learning framework for news recommendation. In: Proceedings of the 2018 World Wide Web Conference on World Wide Web, International World Wide Web Conferences Steering Committee, pp. 167–176

  73. Zhou, M., Fukuoka, Y., Mintz, Y., Goldberg, K., Kaminsky, P., Flowers, E., Aswani, A.: Evaluating machine learning-based automated personalized daily step goals delivered through a mobile phone app: randomized controlled trial. JMIR Mhealth Uhealth 6(1), e28 (2018). https://doi.org/10.2196/mhealth.9117

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabio Gasparetti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gasparetti, F., Aiello, L.M. & Quercia, D. Personalized weight loss strategies by mining activity tracker data. User Model User-Adap Inter 30, 447–476 (2020). https://doi.org/10.1007/s11257-019-09242-7

Download citation

Keywords

  • Health recommender system
  • Human behavior
  • Data mining