The role of personality in shaping social networks and mediating behavioral change

  • Bruno Lepri
  • Jacopo Staiano
  • Erez Shmueli
  • Fabio Pianesi
  • Alex Pentland
Article

Abstract

In this paper, we exploit different facets of the Friends and Family study to deal with two personality-related tasks of paramount importance for the user modeling and ubiquitous computing fields. First, we propose and validate an approach for automatic classification of personality traits based on the ego-networks’ structural characteristics. Our classification results show that (i) mobile phones-based behavioral data can be superior to survey ones for the purposes of personality classification from structural network properties and (ii) particular feature set/network type combinations promise to perform better with given personality traits. Then, we investigate the mediating role played by personality in the context of inducing behavioral change, specifically increasing daily physical activity using social strategies (social comparison and peer pressure). Our results confirm the role played by Extraversion and Neuroticism. Extroverts exposed to a social comparison strategy are positively associated with an increase in physical activity level, while they tend to decrease physical activity level if they are exposed to a peer pressure intervention strategy. Regarding Neuroticism dimension, neurotic people tend to increase their physical daily activity level if they are exposed to a social comparison strategy. Our findings may have implications in designing personality-based behavioral change strategies and suggest to incorporate users’ personality models in the implementation of persuasive systems.

Keywords

Personality recognition Behavioral change Mobile phones  Social network structure 

References

  1. Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fmri: investigating and shaping social mechanisms in the real world. Pervasive Mobile Comput. 7(6), 643–659 (2011)CrossRefGoogle Scholar
  2. Allport, G., Odbert, H.: Trait names: a psycholexical study. Psychol. Monogr. 47(211), i (1936)CrossRefGoogle Scholar
  3. André, E., Klesen, M., Gebhard, P., Allen, S., Rist, T.: Integrating models of personality and emotions into lifelike characters. In: A. Paiva (ed.), Affective Interactions, pp. 150–165. Springer-Verlag New York, Inc., New York. ISBN: 3-540-41520-3 (2000)Google Scholar
  4. Andrews, K.: It’s in your nature: a pluralistic folk psychology. Synthese 165(1), 13–29 (2008)CrossRefGoogle Scholar
  5. Arteaga, S.M., Kudeki, M., Woodworth, A.: Combating obesity trends in teenagers through persuasive mobile technology. SIGACCESS Access. Comput. 94, 17–25 (2009). doi:10.1145/1595061.1595064. ISSN: 1558-2337
  6. Batrinca, L.M., Mana, N., Lepri, B., Pianesi, F., Sebe, N.: Please, tell me about yourself: Automatic personality assessment using short self-presentations. In: Proceedings of the 13th International Conference on Multimodal Interfaces, ICMI ’11, ACM, pp. 255–262. New York. ISBN: 978-1-4503-0641-6 (2011)Google Scholar
  7. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)CrossRefGoogle Scholar
  8. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. Brinkman, W.-P., Fine, N.: Towards customized emotional design: an explorative study of user personality and user interface skin preferences. In: Proceedings of the 2005 Annual Conference on European Association of Cognitive Ergonomics, EACE ’05, pp. 107–114. University of Athens. ISBN: 9-60254-656-5 (2005)Google Scholar
  10. Burt, R.S.: Structural Holes: The Social Structure of Competition, vol. 5. Harvard University Press, Cambridge (1992)Google Scholar
  11. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, ICML ’08, ACM, pp. 96–103. New York. ISBN: 978-1-60558-205-4 (2008)Google Scholar
  12. Celli, F., Bruni, E., Lepri, B.: Automatic personality and interaction style recognition from facebook profile pictures. In: Proceedings of the ACM International Conference on Multimedia, MM ’14, ACM, pp. 1101–1104. New York. ISBN: 978-1-4503-3063-3 (2014)Google Scholar
  13. Chittaranjan, G., Blom, J., Gatica-Perez, D.: Who’s who with big-five: analyzing and classifying personality traits with smartphones. In: Proceedings of the 2011 15th Annual International Symposium on Wearable Computers, ISWC ’11, pp. 29–36. IEEE Computer Society, Washington, DC. ISBN: 978-0-7695-4438-0 (2011)Google Scholar
  14. Chittaranjan, G., Blom, J., Gatica-Perez, D.: Mining large-scale smartphone data for personality studies. Pers. Ubiquitous Comput. 17(3), 433–450 (2013). ISSN: 1617–4909CrossRefGoogle Scholar
  15. Costa, P., McCrae, R.: Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) manual. Psychological Assessment Resources, Odessa (1992)Google Scholar
  16. Davis, J.A., Leinhardt, S.: The structure of positive interpersonal relations in small groups. In: Berger, J., et al. (eds.) Sociological Theories in Progress, pp. 218–251. Houghton-Mifflin, Boston (1972)Google Scholar
  17. de Montjoye, Y.-A., Quoidbach, J., Robic, F., Pentland, A.S.: Predicting personality using novel mobile phone-based metrics. In: Social Computing. Behavioral-Cultural Modeling and Prediction, pp. 48–55. Springer International Publishing, London (2013)Google Scholar
  18. de Oliveira, R., Karatzoglou, A., Cerezo, P.C., de Vicuña, A.A.L., Oliver, N.: Towards a psychographic user model from mobile phone usage. In: Proceedings of the International Conference on Human Factors in Computing Systems. CHI 2011, Extended Abstracts Volume, pp. 2191–2196. ACM, New York (2011)Google Scholar
  19. de Oliveira, R., Cherubini, M., Oliver, N.: Influence of personality on satisfaction with mobile phone services. ACM Transactions on Computer–Human Interaction, 20(2), (2013)Google Scholar
  20. DeNeve, K., Cooper, H.: The happy personality: a meta-analysis of 137 personality traits and subjective well-being. Psychol. Bull. 124, 197–229 (1998)CrossRefGoogle Scholar
  21. Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems. Pers. Ubiquitous Comput. 10(4), 255–268 (2006). doi:10.1007/s00779-005-0046-3. ISSN: 1617–4909
  22. Eston, R.G., Rowlands, A.V., Ingledew, D.K.: Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of childrens activities. J. Appl. Physiol. 84(1), 362–371 (1998)Google Scholar
  23. Eysenck, H.: The Structure of Human Personality. Methuen, London (1953)Google Scholar
  24. Ferwerda, B., Yang, E., Schedl, M., Tkalcic, M.: Personality traits predict music taxonomy preferences. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’15, pp. 2241–2246. ACM, New York. ISBN: 978-1-4503-3146-3. http://doi.acm.org/10.1145/2702613.2732754 (2015)
  25. Fogg, B., Eckles, D.: Mobile Persuasion: 20 Perspectives on the Future of Behavior Change. (2007)Google Scholar
  26. Freeman, L.: Centrality in social networks: conceptual clarification. Soc. Netw. 1(3), 215–239 (1979)CrossRefGoogle Scholar
  27. Furnham, A., Fudge, C.: The five factor model of personality and sales performance. J. Individ. Differ. 29(1), 11 (2008)CrossRefGoogle Scholar
  28. Gelman, A., Hill, J.: Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press, Cambridge (2007)Google Scholar
  29. Gerber, A., Huber, G., Doherty, D., Dowling, C., Panagopoulos, C.: Big five personality traits and responses to persuasive appeals: results from voter turnout experiments. Polit. Behav. 35, 687–728 (2013)CrossRefGoogle Scholar
  30. Gibbons, F., Buunk, B.: Individual differences in social comparison: development of a scale of social comparison orientation. J. Personal. Soc. Psychol. 76(1), 129–142 (1999)CrossRefGoogle Scholar
  31. Gloor, P.A., Fischbach, K., Fuehres, H., Lassenius, C., Niinimki, T., Olguin, D.O., Pentland, S., Piri, A., Putzke, J.: Towards honest signals of creativity identifying personality characteristics through microscopic social network analysis. Procedia - Social and Behavioral Sciences. In: The 2nd Collaborative Innovation Networks Conference - COINs2010. Vol. 26, pp. 166–179. ISSN: 1877–0428 (2011)Google Scholar
  32. Golbeck, J., Robles, C., Edmondson, M., Turner, K.: Predicting personality from twitter. In: Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE 3rd Inernational Conference on Social Computing (SocialCom), pp. 149–156, IEEE Computer Society, Washington, DC, Oct 2011aGoogle Scholar
  33. Golbeck, J., Robles, C., Turner, K.: Predicting personality with social media. In CHI ’11 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’11, pp. 253–262, ACM, New York. ISBN: 978-1-4503-0268-5 (2011b)Google Scholar
  34. Goren-Bar, D., Graziola, I., Pianesi, F., Zancanaro, M.: The influence of personality factors on visitor attitudes towards adaptivity dimensions for mobile museum guides. User Model. User-Adapted Interact. 16(1), 31–62 (2006)CrossRefGoogle Scholar
  35. Graham, L.T., Gosling, S.D.: Can the ambiance of a place be determined by the user profiles of the people who visit it? In: ICWSM (2011)Google Scholar
  36. Granovetter, M.: The strength of weak ties. Am. J. sociol. 78(6), 1360–1380 (1973)CrossRefGoogle Scholar
  37. Halko, S., Kientz, J.A.: Personality and persuasive technology: An exploratory study on health-promoting mobile applications. In: Proceedings of the 5th International Conference on Persuasive Technology, PERSUASIVE’10, pp. 150–161, Springer, Berlin. 978–3. ISBN: 3-642-13225-1-642-13225-4 (2010)Google Scholar
  38. Hallinan, M.T., Kubitschek, W.N.: The effects of individual and structural characteristics on intransitivity in social networks. Soc. Psychol. Q. 51(2), 81–92 (1988)CrossRefGoogle Scholar
  39. Hirsh, J., Kang, S., Bodenhausen, G.: Personalized persuasion: tailoring persuasive appeals to recipient’s personality traits. Psychological Science (2012)Google Scholar
  40. Hovland, C., Janis, I.: Personality and Persuasibility. C.T. Yale University Press, Yale (1959)Google Scholar
  41. Hovland, C., Janis, I., Kelly, H.: Communication and Persuasion: Psychological Studies of Opinion Change. C.T. Yale University Press, Yale (1953)Google Scholar
  42. Hu, R., Pu, P. (2010) A study on user perception of personality-based recommender systems. In: User Modeling, Adaptation, and Personalization, 18th International Conference, UMAP 2010, pp. 291–302, Springer-Verlag, Berlin (2010)Google Scholar
  43. Hurtz, G.M., Donovan, J.J.: Personality and job performance: the big five revisited. J. Appl. Psychol. 85(6), 869 (2000)CrossRefGoogle Scholar
  44. John, O., Srivastava, S.: The BigFive trait taxonomy: History, measurement, and theoretical perspectives, pp. 102–138 (1999)Google Scholar
  45. Kalish, Y., Robins, G.L.: Psychological predispositions and network structure: the relationship between individual predispositions, structural holes and network closure. Soc. Netw. 28(1), 56–84 (2006)CrossRefGoogle Scholar
  46. Kanfer, A., Tanaka, J.: Unraveling the web of personality judgments: the influence of social networks on personality assessment. J. Personal. 61(4), 711–738 (1993)CrossRefGoogle Scholar
  47. Klein, K., Lim, B., S, J.L., Mayer, D.: How do they get there? an examination of the antecedents of network centrality in team networks. Acad. Manag. J. 4, 952–963 (2004)CrossRefGoogle Scholar
  48. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI’95, Vol. 2, pp. 1137–1143. Morgan Kaufmann Publishers Inc., San Francisco. ISBN: 1-55860-363-8 (1995)Google Scholar
  49. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. 110(15), 5802–5805 (2013)CrossRefGoogle Scholar
  50. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48(9), 140–150 (2010)CrossRefGoogle Scholar
  51. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701–1 \(-\) 198701– 4 (2001)Google Scholar
  52. Latora, V., Marchiori, M.: Economic small-world behavior in weighted networks. Eur. Phys. J. B-Condensed Matter Comp. Syst. 32(2), 249–263 (2003)CrossRefGoogle Scholar
  53. Latora, V., Marchiori, M.: A measure of centrality based on network efficiency. New J. Phys. 9(6), 188 (2007)CrossRefGoogle Scholar
  54. Lepri, B., Subramanian, R., Kalimeri, K., Staiano, J., Pianesi, F., Sebe, N.: Connecting meeting behavior with extraversion: a systematic study. IEEE Trans. Affect. Comput. 3(4), 443–455 (2012)CrossRefGoogle Scholar
  55. Little, B.: Me, Myself, and Us: The Science of Personality and the Art of Well-being. Public Affairs (2014)Google Scholar
  56. Lu, Y., Roberts, S.G.B., Liò, P., Dunbar, R., Crowcroft, J.: Size matters: variation in personal network size, personality and effect on information transmission. In: Proceedings of the 12th IEEE International Conference on Computational Science and Engineering, CSE 2009, pp. 188–193, IEEE Computer Society, Washington, DC, 2009Google Scholar
  57. Madan, A., Cebrian, M., Lazer, D., Pentland, A.: Social sensing for epidemiological behavior change. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, UbiComp ’10, pp. 291–300, ACM, New York. ISBN: 978-1-60558-843-8 (2010)Google Scholar
  58. McCarty, C., Green, H.: Personality and personal networks. In: Sunbelt XXV, International Sunbelt Social Network Conference, Konferenzbeitrag (2005)Google Scholar
  59. Mehl, M.R., Gosling, S.D., Pennebaker, J.W.: Personality in its natural habitat: manifestations and implicit folk theories of personality in daily life. J. Personal. Soc. Psychol. 90(5), 862 (2006)CrossRefGoogle Scholar
  60. Miller, G.: The smartphone psychology manifesto. Perspect. Psychol. Sci. 7(3), 221–237 (2012)CrossRefGoogle Scholar
  61. Mohammadi, G., Vinciarelli, A.: Automatic personality perception: prediction of trait attribution based on prosodic features. IEEE Trans. Affect. Comput. 3(3), 273–284 (2012)CrossRefGoogle Scholar
  62. Mohammadi, G., Vinciarelli, A., Mortillaro, M.: The voice of personality: mapping nonverbal vocal behavior into trait attributions. In Proceedings of the 2nd International Workshop on Social Signal Processing, SSPW ’10, pp. 17–20, ACM, New York. ISBN: 978-1-4503-0174-9 (2010)Google Scholar
  63. Nussbaum, M.: How introverts versus extroverts approach small-group argumentative discussions. Elem. School J. 102, 183–197 (2002)CrossRefGoogle Scholar
  64. Olguın, D.O., Gloor, P.A., Pentland, A.S.: Capturing individual and group behavior with wearable sensors. In: Proceedings of the 2009 AAAI Spring Symposium on Human Behavior Modeling, Vol. 9. The AAAI Press, Palo Alto (2009)Google Scholar
  65. Page, X., Kobsa, A.: Personality-based privacy management for location-sharing in diverse subpopulations. In: Proceedings of the 2011 iConference, iConference ’11, pp. 736–738. ACM, New York. ISBN: 978-1-4503-0121-3 (2011)Google Scholar
  66. Pentland, A., Eagle, N., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)CrossRefGoogle Scholar
  67. Quercia, D., Kosinski, M., Stillwell, D., Crowcroft, J.: Our twitter profiles, our selves: Predicting personality with twitter. In: PASSAT/SocialCom 2011, Privacy, Security, Risk and Trust (PASSAT), 2011 IEEE Third International Conference on and 2011 IEEE 3rd International Conference on Social Computing (SocialCom), pp. 180–185. IEEE Computer Society, Washington, DC (2011)Google Scholar
  68. Quercia, D., Casas, D.B.L., Pesce, J.P., Stillwell, D., Kosinski, M., Almeida, V., Crowcroft, J.: Facebook and privacy: The balancing act of personality, gender, and relationship currency. In: Proceedings of the 6th International Conference on Weblogs and Social Media, ICWSM 2012. The AAAI Press, Palo Alto (2012a)Google Scholar
  69. Quercia, D., Lambiotte, R., Stillwell, D., Kosinski, M., Crowcroft, J.: The personality of popular facebook users. In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, CSCW ’12, pp. 955–964. ACM, New York. ISBN: 978-1-4503-1086-4. doi:10.1145/2145204.2145346 (2012b)
  70. Rhodes, R., Smith, N.: Personality correlates of physical activity: a review and metaanalysis. Br. J. Sports Med. 40(12), 958–965 (2006)CrossRefGoogle Scholar
  71. Roberts, S.G., Wilson, R., Fedurek, P., Dunbar, R.: Individual differences and personal social network size and structure. Personality and Individual Differences 44(4), 954–964 (2008)CrossRefGoogle Scholar
  72. Schwartz, H.A., Eichstaedt, J.C., Kern, M.L., Dziurzynski, L., Ramones, S.M., Agrawal, M., Shah, A., Kosinski, M., Stillwell, D., Seligman, M.E., et al.: Personality, gender, and age in the language of social media: the open-vocabulary approach. PLoS One 8(9), e73791 (2013)CrossRefGoogle Scholar
  73. Shmueli, E., Singh, V., Lepri, B., Pentland, A.: Sensing, understanding, and shaping social behavior. IEEE Trans Comput. Soc. Syst. 1(1), 22–34 (2014)CrossRefGoogle Scholar
  74. Staiano, J., Lepri, B., Subramanian, R., Sebe, N., Pianesi, F.: Automatic modeling of personality states in small group interactions. In Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 989–992. ACM, New York. ISBN: 978-1-4503-0616-4 (2011)Google Scholar
  75. Staiano, J., Lepri, B., Aharony, N., Pianesi, F., Sebe, N., Pentland, A.: Friends don’t lie: inferring personality traits from social network structure. In: The 2012 ACM Conference on Ubiquitous Computing, Ubicomp ’12, pp. 321–330. ACM, New York (2012)Google Scholar
  76. Swickert, R., Hittner, J., Harris, J., Herring, J.: Relationships among internet use, personality, and social support. Comput. Human Behav. 18, 437–451 (2002)CrossRefGoogle Scholar
  77. Tapus, A., C, T., Mataric, M.: User-robot personality matching and robot behavior adaptation for post-stroke rehabilitation therapy. Intell. Serv. Robot. 1(2), 169–183 (2008)CrossRefGoogle Scholar
  78. Teso, S., Staiano, J., Lepri, B., Passerini, A., Pianesi, F.: Ego-centric graphlets for personality and affective states recognition. In: Proceedings of the 2013 International Conference on Social Computing, SOCIALCOM ’13, pp. 874–877. IEEE Computer Society, Washington, DC. ISBN: 978-0-7695-5137-1 (2013)Google Scholar
  79. VanderZee, K., Buunk, B., Sanderman, R.: The relationship between social comparison processes and personality. Personal. Individ. Differ. 20(5), 551–565 (1996)CrossRefGoogle Scholar
  80. Vinciarelli, A., Mohammadi, G.: A survey of personality computing. IEEE Trans. Affect. Comput. (2014)Google Scholar
  81. Vitters, J.: Personality traits and subjective well-being: emotional stability, not extraversion, is probably the important predictor. Personal. Individ. Differ. 31, 903–914 (2001)CrossRefGoogle Scholar
  82. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  83. Wehrli, S.: Personality on social network sites: an application of the five factor model. Zurich: ETH Sociology (Working Paper No. 7) (2008)Google Scholar
  84. Zhou, X., Conati, C.: Inferring user goals from personality and behavior in a causal model of user affect. In: Proceedings of the 2003 International Conference on Intelligent User Interfaces. IUI, pp. 211–218. ACM, New York (2003)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bruno Lepri
    • 1
  • Jacopo Staiano
    • 2
  • Erez Shmueli
    • 3
  • Fabio Pianesi
    • 1
  • Alex Pentland
    • 4
  1. 1.Fondazione Bruno KesslerTrentoItaly
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6ParisFrance
  3. 3.Department of Industrial EngineeringTel-Aviv UniversityRamat AvivIsrael
  4. 4.MIT Media LabCambridgeUSA

Personalised recommendations