Experimental evaluation of context-dependent collaborative filtering using item splitting

Abstract

Collaborative Filtering (CF) computes recommendations by leveraging a historical data set of users’ ratings for items. CF assumes that the users’ recorded ratings can help in predicting their future ratings. This has been validated extensively, but in some domains the user’s ratings can be influenced by contextual conditions, such as the time, or the goal of the item consumption. This type of contextual information is not exploited by standard CF models. This paper introduces and analyzes a novel technique for context-aware CF called Item Splitting. In this approach items experienced in two alternative contextual conditions are “split” into two items. This means that the ratings of a split item, e.g., a place to visit, are assigned (split) to two new fictitious items representing for instance the place in summer and the same place in winter. This split is performed only if there is statistical evidence that under these two contextual conditions the items ratings are different; for instance, a place may be rated higher in summer than in winter. These two new fictitious items are then used, together with the unaffected items, in the rating prediction algorithm. When the system must predict the rating for that “split” item in a particular contextual condition (e.g., in summer), it will consider the new fictitious item representing the original one in that particular contextual condition, and will predict its rating. We evaluated this approach on real world, and semi-synthetic data sets using matrix factorization, and nearest neighbor CF algorithms. We show that Item Splitting can be beneficial and its performance depends on the method used to determine which items to split. We also show that the benefit of the method is determined by the relevance of the contextual factors that are used to split.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

    Article  Google Scholar 

  2. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer (2011)

  3. Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A.: Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst. 23(1), 103–145 (2005)

    Article  Google Scholar 

  4. Adomavicius, G., Tuzhilin, A., Berkovsky, S., Luca, E.W.D., Said, A.: Context-awareness in recommender systems: research workshop and movie recommendation challenge. In: Amatriain, X., Torrens, M., Resnick, P., Zanker M. (eds.) RecSys, pp. 385–386. ACM (2010)

  5. Adomavicius, G., Mobasher, B., Ricci, F., Tuzhilin, A.: Context-aware recommender systems. AI Mag. 32(3), 67–80 (2011)

    Google Scholar 

  6. Aldrich, S.E.: Recommender systems in commercial use. AI Mag. 32(3), 28–34 (2011)

    MathSciNet  Google Scholar 

  7. Baltrunas, L., Amatriain, X.: Towards time-dependant recommendation based on implicit feedback. In: Adomavicius, G., Ricci, F. (eds.) Proceedings of the 2009 Workshop on Context-Aware Recommender Systems (2009)

  8. Baltrunas, L., Ricci, F.: Context-based splitting of item ratings in collaborative filtering. In: Bergman, L.D., Tuzhilin, A., Burke, R.D., A. Felfernig, L. Schmidt-Thieme (eds.) RecSys ’09: Proceedings of the 2009 ACM conference on Recommender systems, pp. 245–248. ACM (2009)

  9. Baltrunas, L., Ricci, F.: Context-dependent items generation in collaborative filtering. In: Adomavicius, G., Ricci, F. (eds.) Proceedings of the 2009 Workshop on Context-Aware Recommender Systems (2009)

  10. Baltrunas, L., Ludwig, B., Peer, S., Ricci, F.: Context relevance assessment and exploitation in mobile recommender systems. Pers. Ubiquitous Comput. 16(5), 507–526 (2014)

    Article  Google Scholar 

  11. Bazire, M., Brézillon, P.: Understanding context before using it. In: Dey, A.K., Kokinov, B.N., Leake, D.B., Turner, R.M. (eds.) Modeling and Using Context, 5th International and Interdisciplinary Conference, CONTEXT 2005, Paris, France, July 5–8, 2005, Proceedings, pp. 29–40. Springer (2005)

  12. Berkovsky, S., Kuflik, T., Ricci, F. (2007) Cross-domain mediation in collaborative filtering. In: C. Conati, K.F. McCoy, G. Paliouras (eds.) User Modeling 2007, 11th International Conference, UM 2007, Corfu, Greece, June 25–29, 2007, Proceedings, pp. 355–359. Springer

  13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth Publishing Company, Belmont, CA, Statistics/Probability Series (1984)

    Google Scholar 

  14. Campos, P.G., Díez, F., Cantador, I.: Time-aware recommender systems: a comprehensive survey and analysis of existing evaluation protocols. User Model User-Adap Inter, Special issue on Context-Aware Recommender Systems (2014). doi:10.1007/s11257-012-9136-x

    Google Scholar 

  15. Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer (2011)

  16. Dey, A.K.: Understanding and using context. Pers. Ubiquitous Comput. 5(1), 4–7 (2001)

    Article  Google Scholar 

  17. Fink, J., Kobsa, A.: A review and analysis of commercial user modeling servers for personalization on the world wide web. User Model. User-Adapted Interact. 10, 209–249 (2000)

    Article  Google Scholar 

  18. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, Second Edition (The Morgan Kaufmann Series in Data Management Systems), 2nd edn. Morgan Kaufmann (2006)

  19. Hayes, C., Cunningham, P.: Context boosting collaborative recommendations. Knowl. Based Syst. 17(2–4), 131–138 (2004)

    Article  Google Scholar 

  20. Herlocker, J.L., Konstan, J.A., Terveen, L.G.: John, R.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22, 5–53 (2004)

    Article  Google Scholar 

  21. Hussein, T., Linder, T., Gaulke, W., Ziegler, J.: Hybreed: a software framework for developing context-aware hybrid recommender systems. User Model User-Adap Inter, Special issue on Context-Aware Recommender Systems (2014). doi:10.1007/s11257-012-9134-z

    Google Scholar 

  22. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: RecSys ’10: Proceedings of the fourth ACM conference on Recommender systems, pp. 79–86. ACM, New York, NY, USA (2010)

  23. Kobsa, A.: Generic user modeling systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 136–154. Springer (2007)

  24. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    Article  MATH  Google Scholar 

  25. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD 08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM, New York, NY, USA (2008)

  26. Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, B. Shapira, L., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145–186. Springer (2011)

  27. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender systems. IEEE Comput. 42(8), 30–37 (2009)

    Article  Google Scholar 

  28. Martin, F.J., Donaldson, J., Ashenfelter, A., Torrens, M., Hangartner, R.: The big promise of recommender systems. AI Mag. 32(3), 19–27 (2011)

    Google Scholar 

  29. Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C., Pedone, A.: Experimental comparison of pre- vs. post-filtering approaches in context-aware recommender systems. In: RecSys ’09: Proceedings of the third ACM conference on Recommender (2009) systems, pp. 265–268. ACM, New York, NY, USA

  30. Panniello, U., Tuzhilin, A., Gorgoglione, M.: Comparing context-aware recommender systems in terms of accuracy and diversity: Which contextual modeling, pre-filtering and post-filtering methods perform the best. User Model User-Adap Inter, Special issue on Context-Aware Recommender Systems (2014). doi:10.1007/s11257-012-9135-y

    Google Scholar 

  31. Quinlan, J.R.: C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning), 1st edn. Morgan Kaufmann (1993)

  32. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer (2011)

  33. Said, A., Luca, E.W.D., Albayrak, S.: Inferring contextual user profiles—improving recommender performance. In: Proceedings of the 3rd RecSys Workshop on Context-Aware Recommender Systems (2011)

  34. Shani, G., Gunawardana, A.: Evaluating recommendation systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 257–298. Springer (2011)

  35. Singh, A.S., Bamshad, M.: Contextual recommendation. In: Berendt, B., Hotho, A., Mladenic, D., Semeraro, G. (eds.) From Web to Social Web: Discovering and Deploying User and Content Profiles: Workshop on Web Mining, WebMine 2006, Berlin, Germany, September 18, 2006. Revised Selected and Invited Papers, vol. 4737, pp. 142–160. Springer, Berlin, Heidelberg (2007)

  36. Timely Development implementation, http://www.timelydevelopment.com

  37. Yahoo! Research Webscope Movie Data Set. http://research.yahoo.com/, Version 1.0

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Linas Baltrunas.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baltrunas, L., Ricci, F. Experimental evaluation of context-dependent collaborative filtering using item splitting. User Model User-Adap Inter 24, 7–34 (2014). https://doi.org/10.1007/s11257-012-9137-9

Download citation

Keywords

  • Recommender Systems
  • Collaborative filtering
  • Context
  • Item splitting