Advertisement

The Urban Review

, Volume 49, Issue 4, pp 568–584 | Cite as

Gender Gap in Mathematics and Physics in Chinese Middle Schools: A Case Study of a Beijing’s District

  • Manli Li
  • Yu Zhang
  • Yihan Wang
Article

Abstract

This study examines the gender gaps in mathematics and physics in Chinese middle schools. The data is from the Education Bureau management database which includes all middle school students who took high school entrance exam in a district of Beijing from 2006–2013. The ordinary least square model and quantile regression model are applied. This study consistently shows that the gender gap is unfavorable toward female students in mathematics and physics while favorable toward female students in Chinese and English. Gender gaps favoring males in math and physics become more noticeable among the students who receive the top tier scores in math and physics testing. However, females’ students’ advantage in Chinese and English decreases along the distribution from the bottom to the top percentiles. There are significant intersections between rural residency and gender. Rural students (regardless of gender) perform less well than urban students in all subjects and rural female student show the worst testing scores compared with the other subgroups in mathematics and physics.

Keywords

Gender gap Academic achievement Mathematics Physics HSEE 

References

  1. Aiken, L. (1986). Sex differences in mathematical ability: A review of the literature. Educational Research Quarterly, 10(4), 25–35.Google Scholar
  2. Arnold, C. L. (1995). Using HLM and NAEP data to explore school correlates of 1990 mathematics and geometry achievement in grades 4, 8, and 12: Methodology and results. Research and Development Report. US Government Printing Office, Superintendent of Documents, Mail Stop: SSOP, Washington, DC 20402-9328.Google Scholar
  3. Baker, D. P. & Jones, D. P. (1993). Creating gender equality: Cross-national gender stratification and mathematical performance. Sociology of Education, 66(2), 91–103.Google Scholar
  4. Baram-Tsabari, A., & Yarden, A. (2011). Quantifying the gender gap in science interests. International Journal of Science and Mathematics Education, 9(3), 523–550. doi: 10.1007/s10763-010-9194-7.CrossRefGoogle Scholar
  5. Bedard, K., & Cho, I. (2010). Early gender test score gaps across OECD countries. Economics of Education Review, 29(3), 348–363. doi: 10.1016/j.econedurev.2009.10.015.CrossRefGoogle Scholar
  6. Bharadwaj, P., Giorgi, G. D., Hansen, D. & Neilson, C. (2012). The gender gap in mathematics: Evidence from low and middle income countries, No 18464. NBER Working Papers, National Bureau of Economic Research, Inc. doi: 10.3386/w18464.
  7. Britner, S. L. (2008). Motivation in high school science students: A comparison of gender differences in life, physical, and earth science classes. Journal of Research in Science Teaching, 45(8), 955–970. doi: 10.1002/tea.20249.CrossRefGoogle Scholar
  8. Carnevale, A. P., Strohl, J., & Melton, M. (2011). What’s it worth? The economic value of college majors, 8–10. Washington, DC: Georgetown University Center on Education and the Workforce.Google Scholar
  9. Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31(4), 697–705. doi: 10.1037/0012-1649.31.4.697.CrossRefGoogle Scholar
  10. Catsambis, S. (1995). Gender, race, ethnicity, and science education in the middle grades. Journal of Research in Science Teaching, 32(3), 243–257. doi: 10.1002/tea.3660320305.CrossRefGoogle Scholar
  11. Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in science: Sociocultural and biological considerations. Psychological Bulletin, 135(2), 218–261. doi: 10.1037/a0014412.CrossRefGoogle Scholar
  12. Ellison, G., & Swanson, A. (2010). The gender gap in secondary school mathematics at high achievement levels: Evidence from the american mathematics competitions. Journal of Economic Perspectives, American Economic Association, 24(2), 109–128. doi: 10.3386/w15238.CrossRefGoogle Scholar
  13. Entwisle, D. R., Alexander, K. L., & Olson, L. S. (1994). The gender gap in math: Its possible origins in neighborhood effects. American Sociological Review, 59(6), 822–838. doi: 10.2307/2096370.CrossRefGoogle Scholar
  14. Fryer, R. G., Jr., & Levitt, S. D. (2009). An empirical analysis of the gender gap in mathematics. American Economic Journal: Applied Economics, 2(2), 210–240. doi: 10.3386/w15430.Google Scholar
  15. Gallagher, A., & DeLisi, R. (1994). Gender differences in scholastic aptitude test—Mathematics problem solving among high-ability students. Journal of Educational Psychology, 86, 204–211.CrossRefGoogle Scholar
  16. Guiso, L., Monte, F., Sapienza, P., & Zingales, L. (2008). Culture, gender, and math. Science, 320(5880), 1164–1165. doi: 10.1126/science.1154094.CrossRefGoogle Scholar
  17. Halpern, D. F. (2011). Sex differences in cognitive abilities (4th ed.). Oxford, UK: Psychology Press, Taylor & Francis Group.Google Scholar
  18. Holmlund, H., & Sund, K. (2008). Is the gender gap in school performance affected by the sex of the teacher? Labour Economics, 15(1), 37–53. doi: 10.1016/j.labeco.2006.12.002. (gender, culture, mathematics).CrossRefGoogle Scholar
  19. Hyde, J. S., Fennema, E., Ryan, M., Frost, L. A., & Hopp, C. (1990). Gender comparisons of mathematics studies and effects: A meta-analysis. Psychology of Women Quarterly, 14, 299–324.CrossRefGoogle Scholar
  20. Hyde, J. S., & Mertz, J. E. (2009). Gender, culture, and mathematics performance. Proceedings of the National Academy of Sciences, 106(22), 8801–8807. doi: 10.1073/pnas.0901265106.CrossRefGoogle Scholar
  21. Jacobs, J. E. (2005). Twenty-five years of research on gender and ethnic differences in math and science career choices: What have we learned? New Directions for Child and Adolescent Development, 2005(110), 85–94. doi: 10.1002/cd.151.CrossRefGoogle Scholar
  22. Jacobs, J. E., Davis-Kean, P., Bleeker, M., Eccles, J. S., & Malanchuk, O. G. (2004). “I can, but i don’t want to”: The impact of parents, interests, and activities on gender differences in math. In A. Gallagher & J. Kaufman (Eds.), Gender differences in mathematics: An integrative psychological approach (pp. 246–263). Cambridge: Cambridge University Press.Google Scholar
  23. Lai, F. (2010). Are boys left behind? The evolution of the gender achievement gap in Beijing’s middle schools. Economics of Education Review, 29(4), 383–399. doi: 10.1016/j.econedurev.2009.07.009.CrossRefGoogle Scholar
  24. Langdon, D., McKittrick, G., Beede, D., & Khan, B. (2011). STEM: Good jobs now and for the future. ESA Issue Brief 3(11). US Department of Commerce.Google Scholar
  25. Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16(11), 841–845. doi: 10.1111/j.1467-9280.2005.01623.x.CrossRefGoogle Scholar
  26. Lummis, M. & Stevenson, H. W. (1990). Gender differences in beliefs and achievement: A cross-cultural study. Developmental Psychology, 26(2), 254–263. doi: 10.1037/0012-1649.26.2.254.CrossRefGoogle Scholar
  27. Marks, G. N. (2008). Accounting for the gender gaps in student performance in reading and mathematics: evidence from 31 countries. Oxford Review of Education, 34(1), 89–109.CrossRefGoogle Scholar
  28. Muller, C. (1998). Gender differences in parental involvement and adolescents’ mathematics achievement. Sociology of Education. doi: 10.2307/2673174.Google Scholar
  29. Mullis, I., Martin, M., Gonzalez, E., Gregory, K., Garden, R., O’Connor, K., et al. (2000). TIMSS 1999. Findings from IEA’s Repeat of the Third International Mathematics and Science Study at the Eighth Grade. International Mathematics Report. Boston.Google Scholar
  30. Neuschmidt, Oliver, Barth, J., & HastedtTrends, D. (2008). Trends in gender differences in mathematics and science (TIMSS 1995–2003). Studies in Educational Evaluation, 34(2), 56–72. doi: 10.1016/j.stueduc.2008.04.002.CrossRefGoogle Scholar
  31. Niederle, M. & Vesterlund, L. (2010). Explaining the gender gap in math test scores: The role of competition. The Journal of Economic Perspectives, 24(2), 129–144. http://www.jstor.org/stable/25703504
  32. Nosek, B. A., Smyth, F. L., Sriram, N., Lindner, N. M., Devos, T., Ayala, A., et al. (2009). National differences in gender–science stereotypes predict national sex differences in science and math achievement. Proceedings of the National Academy of Sciences, 106(26), 10593–10597. doi: 10.1073/pnas.0809921106.CrossRefGoogle Scholar
  33. Ors, E., Palomino, F., & Peyrache, E. (2013). Performance gender gap: Does competition matter? Journal of Labor Economics, 31(3), 443–499.CrossRefGoogle Scholar
  34. Penner, A. M., & Paret, M. (2008). Gender differences in mathematics achievement: Exploring the early grades and the extremes. Social Science Research, 37, 239–253.CrossRefGoogle Scholar
  35. Robinson, J. P., & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48(2), 268–302. doi: 10.3102/0002831210372249.CrossRefGoogle Scholar
  36. Spencer, S. J., Steele, C. M., & Quinn, D. M. (1999). Stereotype threat and women’s math performance. Journal of Experimental Social Psychology, 35, 4–28.CrossRefGoogle Scholar
  37. Stoet, G., & Geary, D. C. (2012). Can stereotype threat explain the gender gap in mathematics performance and achievement? Review of General Psychology, 16(1), 93–102. doi: 10.1037/a0026617.CrossRefGoogle Scholar
  38. Tsui, M. (2007). Gender and mathematics achievement in China and the United States. Gender Issues, 24(3), 1–11. doi: 10.1007/s12147-007-9044-2.CrossRefGoogle Scholar
  39. Valian, V. (2007). Women at the top in science–and elsewhere. In S. J. Ceci & W. M. Williams (Eds.), Why aren’t more women in science? Top researchers debate the evidence (pp. 27–37). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  40. Warrington, M., & Younge, M. (2000). The other side of the gender gap. Gender and Education, 12(4), 493–508. doi: 10.1080/09540250020004126.CrossRefGoogle Scholar
  41. Zhang, Y., & Tsang, M. (2015). Gender gap in the national college entrance exam performance in China—A case study of a typical Chinese municipality. Asia Pacific Education Review, 16(1), 27–36. doi: 10.1007/s12564-014-9351-8.CrossRefGoogle Scholar
  42. Zhang, Y., Chen, D. & Wang, W. (2014). The heterogeneous effect of ability grouping on students’ national college entrance exam performance. International Journal of Educational Development, 39, 80–91.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institute of EducationTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations