Skip to main content

Advertisement

Log in

Inflammatory cytokines and their potential role in kidney stone disease: a Mendelian randomization study

  • Urology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Previous studies have reported a complex relationship between inflammatory cytokines and kidney stone disease (KSD). The purpose of this paper is to investigate the potential causal impact of inflammatory cytokines on KSD by Mendelian randomization (MR) analysis.

Methods

In our study, a thorough two-sample Mendelian randomization (MR) analysis was performed by us to determine the potential causal relationship between inflammatory cytokines and kidney stone disease. Utilizing GWAS summary data of inflammatory cytokines and KSD, we performed the first two-sample MR analysis. Genetic variants in GWASs related to inflammatory cytokines were employed as instrumental variables (IVs). The data on cytokines were derived from 14,824 participants and analyzed by utilizing the Olink Target-96 Inflammation Panel. GWAS summary data related to KSD (9713 cases and 366,693 controls) were obtained from the FinnGen consortium. The primary MR analysis method was Inverse variance weighted. Reverse MR analysis, Cochran's Q test, MR Egger, and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) were used to assess the stability of the results.

Results

91 cytokines were enrolled in the MR analysis after strict quality control of IV. The IVW analysis revealed 2 cytokines as risk factors for KSD: Cystatin D (OR 1.06, 95% CI 1.01–1.11), Fibroblast growth factor 5 (OR 1.06, 95% CI 1.00–1.12), suggesting they are positively associated with the occurrence of kidney stones. We also found 3 protective associations between cytokines and KSD: Artemin (OR 0.86, 95% CI 0.78–0.96), T-cell surface glycoprotein CD6 isoform (OR 0.92, 95% CI 0.88–0.98), STAM-binding protein (OR 0.83, 95% CI 0.69–0.99). There was no horizontal pleiotropy or significant heterogeneity in our MR analysis, as determined by the p-value results of our MR Egger’s intercept test, Cochrane Q-test, and MR-PRESSO, which were all > 0.05.

Conclusions

Our study explored a variety of inflammatory cytokines related to KSD through MR analysis, which validated several previous findings and provided some new potential biomarkers for KSD. However, the findings require further investigation to validate their exact functions in the pathogenesis and evolution of KSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The original contributions presented in this study are included in the article/Supplementary material, further inquiries can be directed to the corresponding author.

Abbreviations

KSD:

Kidney stone disease

NLR:

Neutrophil-to-lymphocyte ratio

PNL:

Percutaneous nephrolithotomy

FGF-5:

Fibroblast growth factor 5

STAMBP:

STAM-binding protein

GWAS:

Genome-wide association studies

IVs:

Instrumental variable

IVW:

Inverse variance weighted

MR:

Mendelian randomization

MR-PRESSO:

MR-Pleiotropy Residual Sum and Outlier method

OR:

Odds ratio

SNPs:

Single nucleotide polymorphism

DNER:

Delta and Notch-like epidermal growth factor-related receptor

MIP-1α:

Macrophage inflammatory protein 1α

RTECs:

Renal tubular epithelial cells

MCP-1:

Monocyte chemoattractant protein 1

CSF-1:

Colony-stimulating factor 1

CD5L:

CD5 antigen-like

SCFA:

Short chain fatty acids

PSHC:

Potassium sodium hydrogen citrate

References

  1. Chewcharat A, Curhan G (2021) Trends in the prevalence of kidney stones in the United States from 2007 to 2016. Urolithiasis 49:27–39. https://doi.org/10.1007/s00240-020-01210-w

    Article  CAS  PubMed  Google Scholar 

  2. Rule AD, Lieske JC, Li X et al (2014) The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol JASN 25:2878–2886. https://doi.org/10.1681/ASN.2013091011

    Article  PubMed  Google Scholar 

  3. Zhe M, Hang Z (2017) Nephrolithiasis as a risk factor of chronic kidney disease: a meta-analysis of cohort studies with 4,770,691 participants. Urolithiasis 45:441–448. https://doi.org/10.1007/s00240-016-0938-x

    Article  CAS  PubMed  Google Scholar 

  4. Rule AD, Lieske JC, Pais VM (2020) Management of kidney stones in 2020. JAMA 323:1961–1962. https://doi.org/10.1001/jama.2020.0662

    Article  PubMed  Google Scholar 

  5. Lee KS, Ha JS, Koo KC (2017) Significance of neutrophil-to-lymphocyte ratio as a novel indicator of spontaneous ureter stone passage. Yonsei Med J 58:988–993. https://doi.org/10.3349/ymj.2017.58.5.988

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abou Heidar N, Labban M, Bustros G, Nasr R (2020) Inflammatory serum markers predicting spontaneous ureteral stone passage. Clin Exp Nephrol 24:277–283. https://doi.org/10.1007/s10157-019-01807-5

    Article  CAS  PubMed  Google Scholar 

  7. Cetinkaya M, Buldu I, Kurt O, Inan R (2017) Platelet-to-lymphocyte ratio: a new factor for predicting systemic inflammatory response syndrome after percutaneous nephrolithotomy. Urol J 14:4089–4093

    PubMed  Google Scholar 

  8. Dominguez-Gutierrez PR, Kwenda EP, Khan SR, Canales BK (2020) Immunotherapy for stone disease. Curr Opin Urol 30:183–189. https://doi.org/10.1097/MOU.0000000000000729

    Article  PubMed  Google Scholar 

  9. Lawlor DA, Harbord RM, Sterne JAC et al (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163. https://doi.org/10.1002/sim.3034

    Article  PubMed  Google Scholar 

  10. Birney E (2022) Mendelian randomization. Cold Spring Harb Perspect Med 12:a041302. https://doi.org/10.1101/cshperspect.a041302

    Article  PubMed  PubMed Central  Google Scholar 

  11. Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23:R89-98. https://doi.org/10.1093/hmg/ddu328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Timpson NJ, Wade KH, Smith GD (2012) Mendelian randomization: application to cardiovascular disease. Curr Hypertens Rep 14:29–37. https://doi.org/10.1007/s11906-011-0242-7

    Article  PubMed  Google Scholar 

  13. Skrivankova VW, Richmond RC, Woolf BAR et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the STROBE-MR statement. JAMA 326:1614–1621. https://doi.org/10.1001/jama.2021.18236

    Article  PubMed  Google Scholar 

  14. Zhao JH, Stacey D, Eriksson N et al (2023) Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets. Nat Immunol 24:1540–1551. https://doi.org/10.1038/s41590-023-01588-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32:377–389. https://doi.org/10.1007/s10654-017-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314. https://doi.org/10.1002/gepi.21965

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun AY, Hinck B, Cohen BR et al (2018) Inflammatory cytokines in the papillary tips and urine of nephrolithiasis patients. J Endourol 32:236–244. https://doi.org/10.1089/end.2017.0699

    Article  PubMed  Google Scholar 

  18. Matsuura K, Maehara N, Hirota A et al (2022) Two independent modes of kidney stone suppression achieved by AIM/CD5L and KIM-1. Commun Biol 5:1–13. https://doi.org/10.1038/s42003-022-03750-w

    Article  CAS  Google Scholar 

  19. Mevissen TET, Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86:159–192. https://doi.org/10.1146/annurev-biochem-061516-044916

    Article  CAS  PubMed  Google Scholar 

  20. Davies CW, Paul LN, Das C (2013) Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 52:7818–7829. https://doi.org/10.1021/bi401106b

    Article  CAS  PubMed  Google Scholar 

  21. Bednash JS, Johns F, Patel N et al (2021) The deubiquitinase STAMBP modulates cytokine secretion through the NLRP3 inflammasome. Cell Signal 79:109859. https://doi.org/10.1016/j.cellsig.2020.109859

    Article  CAS  PubMed  Google Scholar 

  22. Swanson KV, Deng M, Ting JP-Y (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489. https://doi.org/10.1038/s41577-019-0165-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mangan MSJ, Olhava EJ, Roush WR et al (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17:588–606. https://doi.org/10.1038/nrd.2018.97

    Article  CAS  PubMed  Google Scholar 

  24. Mulay SR, Kulkarni OP, Rupanagudi KV et al (2013) Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest 123:236–246. https://doi.org/10.1172/JCI63679

    Article  CAS  PubMed  Google Scholar 

  25. Anders H-J, Suarez-Alvarez B, Grigorescu M et al (2018) The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1-mediated tissue injury. Kidney Int 93:656–669. https://doi.org/10.1016/j.kint.2017.09.022

    Article  CAS  PubMed  Google Scholar 

  26. Joshi S, Wang W, Peck AB, Khan SR (2015) Activation of the NLRP3 inflammasome in association with calcium oxalate crystal induced reactive oxygen species in kidneys. J Urol 193:1684–1691. https://doi.org/10.1016/j.juro.2014.11.093

    Article  CAS  PubMed  Google Scholar 

  27. Knauf F, Asplin JR, Granja I et al (2013) NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int 84:895–901. https://doi.org/10.1038/ki.2013.207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan SR (2004) Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Exp Nephrol 98:e55-60. https://doi.org/10.1159/000080257

    Article  CAS  PubMed  Google Scholar 

  29. Santos RF, Oliveira L, Carmo AM (2016) Tuning T cell activation: the function of CD6 at the immunological synapse and in T cell responses. Curr Drug Targets 17:630–639. https://doi.org/10.2174/1389450116666150531152439

    Article  CAS  PubMed  Google Scholar 

  30. Orta-Mascaró M, Consuegra-Fernández M, Carreras E et al (2016) CD6 modulates thymocyte selection and peripheral T cell homeostasis. J Exp Med 213:1387–1397. https://doi.org/10.1084/jem.20151785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Espinosa-Ortiz EJ, Eisner BH, Lange D, Gerlach R (2019) Current insights into the mechanisms and management of infection stones. Nat Rev Urol 16:35–53. https://doi.org/10.1038/s41585-018-0120-z

    Article  PubMed  Google Scholar 

  32. Sun L, Su Y, Jiao A et al (2023) T cells in health and disease. Signal Transduct Target Ther 8:235. https://doi.org/10.1038/s41392-023-01471-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao J, Lin H, Wang L et al (2021) Suppression of FGF5 and FGF18 expression by cholesterol-modified siRNAs promotes hair growth in mice. Front Pharmacol 12:666860. https://doi.org/10.3389/fphar.2021.666860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang R, Li Y, Jia K et al (2020) Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep. Cell Death Dis 11:407. https://doi.org/10.1038/s41419-020-2622-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Higgins CA, Petukhova L, Harel S et al (2014) FGF5 is a crucial regulator of hair length in humans. Proc Natl Acad Sci U S A 111:10648–10653. https://doi.org/10.1073/pnas.1402862111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Newton-Cheh C, Johnson T, Gateva V et al (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41:666–676. https://doi.org/10.1038/ng.361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xi B, Shen Y, Reilly KH et al (2013) Recapitulation of four hypertension susceptibility genes (CSK, CYP17A1, MTHFR, and FGF5) in East Asians. Metabolism 62:196–203. https://doi.org/10.1016/j.metabol.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  38. Khan SR, Pearle MS, Robertson WG et al (2016) Kidney stones. Nat Rev Dis Primer 2:1–23. https://doi.org/10.1038/nrdp.2016.8

    Article  Google Scholar 

  39. Borghi L, Meschi T, Guerra A et al (1999) Essential arterial hypertension and stone disease. Kidney Int 55:2397–2406. https://doi.org/10.1046/j.1523-1755.1999.00483.x

    Article  CAS  PubMed  Google Scholar 

  40. Freije JP, Abrahamson M, Olafsson I et al (1991) Structure and expression of the gene encoding cystatin D, a novel human cysteine proteinase inhibitor. J Biol Chem 266:20538–20543. https://doi.org/10.1016/S0021-9258(18)54958-9

    Article  CAS  PubMed  Google Scholar 

  41. Tolomeo P, Butt JH, Kondo T et al (2023) Importance of cystatin C in estimating glomerular filtration rate: the PARADIGM-HF trial. Eur Heart J 44:2202–2212. https://doi.org/10.1093/eurheartj/ehad210

    Article  CAS  PubMed  Google Scholar 

  42. Washino S, Hosohata K, Miyagawa T (2020) Roles played by biomarkers of kidney injury in patients with upper urinary tract obstruction. Int J Mol Sci 21:5490. https://doi.org/10.3390/ijms21155490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nashida T, Sato R, Haga-Tsujimura M et al (2013) Antigen-presenting cells in parotid glands contain cystatin D originating from acinar cells. Arch Biochem Biophys 530:32–39. https://doi.org/10.1016/j.abb.2012.12.009

    Article  CAS  PubMed  Google Scholar 

  44. Hill LJ, Di Pietro V, Hazeldine J et al (2017) Cystatin D (CST5): an ultra-early inflammatory biomarker of traumatic brain injury. Sci Rep 7:5002. https://doi.org/10.1038/s41598-017-04722-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Daudon M, Jungers P, Bazin D, Williams JC (2018) Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis 46:459–470. https://doi.org/10.1007/s00240-018-1043-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Türk C, Petřík A, Sarica K et al (2016) EAU guidelines on diagnosis and conservative management of urolithiasis. Eur Urol 69:468–474. https://doi.org/10.1016/j.eururo.2015.07.040

    Article  PubMed  Google Scholar 

  47. Wang L, Cui Y, Zhang J, Zhang Q (2017) Safety of potassium-bearing citrate in patients with renal transplantation: a case report. Medicine (Baltimore) 96:e6933. https://doi.org/10.1097/MD.0000000000006933

    Article  PubMed  Google Scholar 

  48. Gridley CM, Sourial MW, Lehman A, Knudsen BE (2019) Medical dissolution therapy for the treatment of uric acid nephrolithiasis. World J Urol 37:2509–2515. https://doi.org/10.1007/s00345-019-02688-9

    Article  CAS  PubMed  Google Scholar 

  49. Zhu W, Zhao Z, Chou F et al (2019) Loss of the androgen receptor suppresses intrarenal calcium oxalate crystals deposition via altering macrophage recruitment/M2 polarization with change of the miR-185-5p/CSF-1 signals. Cell Death Dis 10:275. https://doi.org/10.1038/s41419-019-1358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jin X, Jian Z, Chen X et al (2021) Short chain fatty acids prevent glyoxylate-induced calcium oxalate stones by GPR43-dependent immunomodulatory mechanism. Front Immunol 12:729382. https://doi.org/10.3389/fimmu.2021.729382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to all SCALLOP Consortium studies for providing open access to the summary association statistics data. Genetic association estimates for kidney stone disease were obtained from the FinnGen consortium (www.finngen.fi/en). We thank all investigators for sharing these data.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81974092).

Author information

Authors and Affiliations

Authors

Contributions

D.F. Yuan and J.Y. Yang prepared and drafted the manuscript. X. Yu obtained funding for the study and provided critical revision of the manuscript for important intellectual content. W.S. Wu, Y. Amier, X.M. Li, and W.L. Wan assisted in obtaining data for the review article and revised the manuscript. Y.S. Huang and J.B. Li confirmed the authenticity of all the raw data.

Corresponding author

Correspondence to Xiao Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval and consent to participate

Our analysis used publicly available GWAS summary statistics. No new data were collected, and no new ethical approval was required.

Consent to publish

All authors have read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, D., Yang, J., Wu, W. et al. Inflammatory cytokines and their potential role in kidney stone disease: a Mendelian randomization study. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-04084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-04084-8

Keywords

Navigation