Skip to main content

Advertisement

Log in

Associations between serum 25-hydroxyvitamin D and prognosis of chronic kidney disease: a prospective cohort study

  • Nephrology – Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background and objectives

25-hydroxyvitamin D [25(OH)D] deficiency is prevalent in patients with chronic kidney disease (CKD), the associations between serum 25(OH)D levels and mortality in patients with CKD remain unclear, and this study aimed to explore these associations further.

Methods

4989 participants with CKD were enrolled in the study, and the Cox regression model was used to assess the effects of serum 25(OH)D concentrations on mortality risk. A restricted cubic spline model was used to explore the dose–response relationships, and threshold effect analysis was performed based on inflection points identified by a two-piecewise linear regression model. In addition, subgroup and sensitivity analyses were employed.

Results

1255 participants died during a mean follow-up period of 70 months. Compared with the 25(OH)D-deficient group, the fully adjusted hazard ratios and 95% confidence intervals for the 25(OH)D-adequate group were 0.631 (0.545, 0.730) for all-cause mortality, 0.569 (0.435, 0.743) for cardiovascular mortality, 0.637 (0.461, 0.878) for hypertension mortality, and cancer mortality was 0.596 (0.426, 0.834). The inflection points of serum 25(OH)D concentration affecting all-cause and cardiovascular mortality were 89 nmol/L, and 107 nmol/L, respectively. Subgroup analyses and interaction tests suggested that the effects varied across populations. The results of sensitivity analyses indicated a reliable correlation.

Conclusion

We found an association between serum 25(OH)D concentrations and the prognosis of patients with CKD as a reliable predictor of early intervention and intensive care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The original data used in this study are nationally representative and publicly available and can be directly obtained through application to NHANES, which is an ongoing periodic survey of a nationally representative sample of the U.S. noninstitutionalized civilian population using a complex multistage whole-population probability sampling strategy. More details about the survey can be found on the publicly available NHANES website. Data used in this study can be made available upon reasonable request.

Code availability

The code can be consulted with the corresponding author upon reasonable request.

References

  1. (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 395(10225):709–733.https://doi.org/10.1016/s0140-6736(20)30045-3

  2. Stevens PE, Levin A (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Annals Intern Med 158(11):825–830. https://doi.org/10.7326/0003-4819-158-11-201306040-00007

    Article  Google Scholar 

  3. Gallagher JC, Rosen CJ (2023) Vitamin D: 100 years of discoveries, yet controversy continues. Lancet Diabetes Endocrinol 11(5):362–374. https://doi.org/10.1016/s2213-8587(23)00060-8

    Article  CAS  PubMed  Google Scholar 

  4. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science (New York, NY) 311(5768):1770–1773. https://doi.org/10.1126/science.1123933

    Article  CAS  Google Scholar 

  5. Ismailova A, White JH (2022) Vitamin D, infections and immunity. Rev Endocrine Metabol dis 23(2):265–277. https://doi.org/10.1007/s11154-021-09679-5

    Article  CAS  Google Scholar 

  6. de la Guía-Galipienso F, Martínez-Ferran M, Vallecillo N, Lavie CJ, Sanchis-Gomar F, Pareja-Galeano H (2021) Vitamin D and cardiovascular health. Clin Nutrit (Edinburgh, Scotland) 40(5):2946–2957. https://doi.org/10.1016/j.clnu.2020.12.025

    Article  CAS  Google Scholar 

  7. Yu Y, Cheng S, Huang H, Deng Y, Cai C, Gu M, Chen X, Niu H, Hua W (2023) Joint association of sedentary behavior and vitamin D status with mortality among cancer survivors. BMC Med 21(1):411. https://doi.org/10.1186/s12916-023-03118-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chowdhury R, Kunutsor S, Vitezova A, Oliver-Williams C, Chowdhury S, Kiefte-de-Jong JC, Khan H, Baena CP, Prabhakaran D, Hoshen MB et al (2014) Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ (Clin Res Ed) 348:g1903. https://doi.org/10.1136/bmj.g1903

    Article  Google Scholar 

  9. Hahn J, Cook NR, Alexander EK, Friedman S, Walter J, Bubes V, Kotler G, Lee IM, Manson JE, Costenbader KH (2022) Vitamin D and marine omega 3 fatty acid supplementation and incident autoimmune disease: VITAL randomized controlled trial. BMJ (Clin Res) 376:e066452. https://doi.org/10.1136/bmj-2021-066452

    Article  Google Scholar 

  10. Zhang YP, Wan YD, Sun TW, Kan QC, Wang LX (2014) Association between vitamin D deficiency and mortality in critically ill adult patients: a meta-analysis of cohort studies. Critic Care (London, England) 18(6):684. https://doi.org/10.1186/s13054-014-0684-9

    Article  Google Scholar 

  11. Bi WG, Nuyt AM, Weiler H, Leduc L, Santamaria C, Wei SQ (2018) Association between vitamin D supplementation during pregnancy and offspring growth, morbidity, and mortality: a systematic review and meta-analysis. JAMA Pediatrics 172(7):635–645. https://doi.org/10.1001/jamapediatrics.2018.0302

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anderson PH, O’Loughlin PD, May BK, Morris HA (2004) Determinants of circulating 1,25-dihydroxyvitamin D3 levels: the role of renal synthesis and catabolism of vitamin D. J Steroid Biochem Mol Biol 89–90(1–5):111–113. https://doi.org/10.1016/j.jsbmb.2004.03.089

    Article  CAS  PubMed  Google Scholar 

  13. KDIGO (2017) Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl 7(1):1–59.https://doi.org/10.1016/j.kisu.2017.04.001

  14. Pilz S, Tomaschitz A, Friedl C, Amrein K, Drechsler C, Ritz E, Boehm BO, Grammer TB, März W (2011) Vitamin D status and mortality in chronic kidney disease. Nephrol Dialysis Transplant 26(11):3603–3609. https://doi.org/10.1093/ndt/gfr076

    Article  CAS  Google Scholar 

  15. Duranton F, Rodriguez-Ortiz ME, Duny Y, Rodriguez M, Daurès JP, Argilés A (2013) Vitamin D treatment and mortality in chronic kidney disease: a systematic review and meta-analysis. Am J Nephrol 37(3):239–248. https://doi.org/10.1159/000346846

    Article  CAS  PubMed  Google Scholar 

  16. Li R, Li Y, Fan Z, Liu Z, Lin J, He M (2023) L-shaped association of serum 25-hydroxyvitamin D with all-cause and cardiovascular mortality in older people with chronic kidney disease: results from the NHANES database prospective cohort study. BMC Public Health 23(1):1260. https://doi.org/10.1186/s12889-023-16165-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Reimer KC, Nadal J, Meiselbach H, Schmid M, Schultheiss UT, Kotsis F, Stockmann H, Friedrich N, Nauck M, Krane V et al (2023) Association of mineral and bone biomarkers with adverse cardiovascular outcomes and mortality in the German Chronic Kidney Disease (GCKD) cohort. Bone Res 11(1):52. https://doi.org/10.1038/s41413-023-00291-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. KDIGO (2021) Clinical practice guideline for the management of glomerular diseases. Kidney Int 100(4s):S1–s276.https://doi.org/10.1016/j.kint.2021.05.021

  19. Delgado C, Baweja M, Crews DC, Eneanya ND, Gadegbeku CA, Inker LA, Mendu ML, Miller WG, Moxey-Mims MM, Roberts GV et al (2022) A unifying approach for GFR estimation: recommendations of the NKF-ASN task force on reassessing the inclusion of race in diagnosing kidney disease. Am J Kidney Dis 79(2):268-288.e261. https://doi.org/10.1053/j.ajkd.2021.08.003

    Article  PubMed  Google Scholar 

  20. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metabol 96(7):1911–1930. https://doi.org/10.1210/jc.2011-0385

    Article  CAS  Google Scholar 

  21. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  22. Mauvais-Jarvis F, Bairey Merz N, Barnes PJ, Brinton RD, Carrero JJ, DeMeo DL, De Vries GJ, Epperson CN, Govindan R, Klein SL et al (2020) Sex and gender: modifiers of health, disease, and medicine. Lancet (London, England) 396(10250):565–582. https://doi.org/10.1016/s0140-6736(20)31561-0

    Article  PubMed  Google Scholar 

  23. Huang P, Mai Y, Zhao J, Yi Y, Wen Y (2024) Association of systemic immune-inflammation index and systemic inflammation response index with chronic kidney disease: observational study of 40,937 adults. Inflamm res 73(4):655–667. https://doi.org/10.1007/s00011-024-01861-0

    Article  CAS  PubMed  Google Scholar 

  24. Ko DT, Alter DA, Guo H, Koh M, Lau G, Austin PC, Booth GL, Hogg W, Jackevicius CA, Lee DS et al (2016) High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART Study. J Am College Cardiol 68(19):2073–2083. https://doi.org/10.1016/j.jacc.2016.08.038

    Article  CAS  Google Scholar 

  25. Magliano DJ, Sacre JW, Harding JL, Gregg EW, Zimmet PZ, Shaw JE (2020) Young-onset type 2 diabetes mellitus - implications for morbidity and mortality. Nat Rev Endocrinol 16(6):321–331. https://doi.org/10.1038/s41574-020-0334-z

    Article  PubMed  Google Scholar 

  26. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics. CA Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  27. Zhao D, Liu J, Wang M, Zhang X, Zhou M (2019) Epidemiology of cardiovascular disease in China: current features and implications. Nature Rev Cardiol 16(4):203–212. https://doi.org/10.1038/s41569-018-0119-4

    Article  Google Scholar 

  28. Arnson Y, Amital H, Shoenfeld Y (2007) Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Annals Rheum Dis 66(9):1137–1142. https://doi.org/10.1136/ard.2007.069831

    Article  CAS  Google Scholar 

  29. Merke J, Milde P, Lewicka S, Hügel U, Klaus G, Mangelsdorf DJ, Haussler MR, Rauterberg EW (1989) Ritz E (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Investig 83(6):1903–1915. https://doi.org/10.1172/jci114097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jeon SM, Shin EA (2018) Exploring vitamin D metabolism and function in cancer. Experim Mol Med 50(4):1–14. https://doi.org/10.1038/s12276-018-0038-9

    Article  CAS  Google Scholar 

  31. Hyppönen E, Berry DJ, Wjst M, Power C (2009) Serum 25-hydroxyvitamin D and IgE - a significant but nonlinear relationship. Allergy 64(4):613–620. https://doi.org/10.1111/j.1398-9995.2008.01865.x

    Article  CAS  PubMed  Google Scholar 

  32. Chen NX, O’Neill KD, Duan D, Moe SM (2002) Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int 62(5):1724–1731. https://doi.org/10.1046/j.1523-1755.2002.00625.x

    Article  CAS  PubMed  Google Scholar 

  33. Honye J, Mahon DJ, Jain A, White CJ, Ramee SR, Wallis JB, al-Zarka A, Tobis JM (1992) Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging. Circulation 85(3):1012–1025. https://doi.org/10.1161/01.cir.85.3.1012

    Article  CAS  PubMed  Google Scholar 

  34. Chang AR, Anderson C (2017) Dietary phosphorus intake and the kidney. Annual Rev Nutrit 37:321–346. https://doi.org/10.1146/annurev-nutr-071816-064607

    Article  CAS  Google Scholar 

  35. Schaeffner ES, Kurth T, Curhan GC, Glynn RJ, Rexrode KM, Baigent C, Buring JE, Gaziano JM (2003) Cholesterol and the risk of renal dysfunction in apparently healthy men. J Am Soc Nephrol JASN 14(8):2084–2091. https://doi.org/10.1681/asn.V1482084

    Article  CAS  PubMed  Google Scholar 

  36. Liu Y, Coresh J, Eustace JA, Longenecker JC, Jaar B, Fink NE, Tracy RP, Powe NR, Klag MJ (2004) Association between cholesterol level and mortality in dialysis patients: role of inflammation and malnutrition. JAMA 291(4):451–459. https://doi.org/10.1001/jama.291.4.451

    Article  CAS  PubMed  Google Scholar 

  37. Bischoff-Ferrari HA, Borchers M, Gudat F, Dürmüller U, Stähelin HB, Dick W (2004) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Mineral Res 19(2):265–269. https://doi.org/10.1359/jbmr.2004.19.2.265

    Article  CAS  Google Scholar 

  38. Seravalle G, Grassi G (2017) Obesity and hypertension. Pharmacol Res 122:1–7. https://doi.org/10.1016/j.phrs.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  39. Earthman CP, Beckman LM, Masodkar K, Sibley SD (2012) The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int J Obesity 36(3):387–396. https://doi.org/10.1038/ijo.2011.119

    Article  CAS  Google Scholar 

  40. Rader DJ, Hovingh GK (2014) HDL and cardiovascular disease. Lancet (London, England) 384(9943):618–625. https://doi.org/10.1016/s0140-6736(14)61217-4

    Article  CAS  PubMed  Google Scholar 

  41. Gregg EW, Chen H, Bancks MP, Manalac R, Maruthur N, Munshi M, Wing R (2024) Impact of remission from type 2 diabetes on long-term health outcomes: findings from the Look AHEAD study. Diabetologia 67(3):459–469. https://doi.org/10.1007/s00125-023-06048-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu W, Li X, Di J, Zhou H, Niu H, Yang M (2024) Dietary inflammatory index is associated with Vitamin D in CKD patients. Int Urol Nephrol 56(1):335–344. https://doi.org/10.1007/s11255-023-03679-x

    Article  CAS  PubMed  Google Scholar 

  43. Li J, Liu Z, Xie X, Peng L, Dai H, Gao C, Mao W, Yuan W, Zhao X, Zhang H et al (2024) Dietary vitamin intake and cancer risk in patients with chronic kidney disease: results from the National Health and Nutrition Examination Survey (2007–2008). Int Urol Nephrol. https://doi.org/10.1007/s11255-024-04060-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation was performed by Yaqing Wen, Yuying Wang, and Zhirui Wang. Formal analyses were performed by Yanpei Mai and Yushan Yi. The first draft of the manuscript was written by Yanpei Mai, and Yushan Yi, and Peixian Huang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanpei Mai.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethics statement

The survey protocol for the NHANES was approved by the CDC’s National Center for Health Statistics Institutional Research Ethics Review Board (https://www.cdc.gov/nchs/nhanes/irba98.htm). The NCHS IRB/ERB Protocol number is Continuation of Protocol #2011–17.

Consent to participate

This study used participants’ data from the NHANES public database, so participant statements were not available.

Consent for publication

We confirm that the manuscript has been read and approved for publication by all of the named authors and that there are no other persons who meet the criteria for authorship but are not listed. We also confirm that the order of authorship listed in the manuscript has been approved by all of us.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, Y., Yi, Y., Wen, Y. et al. Associations between serum 25-hydroxyvitamin D and prognosis of chronic kidney disease: a prospective cohort study. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-04083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-04083-9

Keywords

Navigation