Skip to main content

Advertisement

Log in

The role of PI3K/Akt signaling pathway in chronic kidney disease

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD), including chronic glomerulonephritis, IgA nephropathy and diabetic nephropathy, are common chronic diseases characterized by structural damage and functional decline of the kidneys. The current treatment of CKD is symptom relief. Several studies have reported that the phosphatidylinositol 3 kinases (PI3K)/protein kinase B (Akt) signaling pathway is a pathway closely related to the pathological process of CKD. It can ameliorate kidney damage by inhibiting this signal pathway which is involved with inflammation, oxidative stress, cell apoptosis, epithelial mesenchymal transformation (EMT) and autophagy. This review highlights the role of activating or inhibiting the PI3K/Akt signaling pathway in CKD-induced inflammatory response, apoptosis, autophagy and EMT. We also summarize the latest evidence on treating CKD by targeting the PI3K/Akt pathway, discuss the shortcomings and deficiencies of PI3K/Akt research in the field of CKD, and identify potential challenges in developing these clinical therapeutic CKD strategies, and provide appropriate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of supporting data

All raw data will be provided as required.

References

  1. (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet (London, England) 395(10225):709–733

  2. Bello AK, Levin A, Tonelli M et al (2017) Assessment of global kidney health care status. JAMA 317(18):1864–1881

    Article  PubMed  PubMed Central  Google Scholar 

  3. Neyra JA, Chawla LS (2021) Acute kidney disease to chronic kidney disease. Crit Care Clin 37(2):453–474

    Article  PubMed  Google Scholar 

  4. Kalantar-Zadeh K, Jafar TH, Nitsch D et al (2021) Chronic kidney disease. Lancet 398(10302):786–802

    Article  CAS  PubMed  Google Scholar 

  5. Tonelli M, Riella MC (2014) Chronic kidney disease: chronic kidney disease and the ageing population. Nat Rev Nephrol 10(3):127–128

    Article  PubMed  Google Scholar 

  6. Bellasi A, Di Lullo L, Di Iorio B (2019) Chronic kidney disease: the silent epidemy. J Clin Med 8(11):1795. https://doi.org/10.3390/jcm8111795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jha V, Garcia-Garcia G, Iseki K et al (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382(9888):260–272

    Article  PubMed  Google Scholar 

  8. Vandevoorde RG, Mitsnefes MM (2011) Hypertension and CKD. Adv Chronic Kidney Dis 18(5):355–361

    Article  PubMed  Google Scholar 

  9. Iino Y (2008) Definition of CKD and classification of CKD stage. Nihon Rinsho 66(9):1645–1649

    PubMed  Google Scholar 

  10. Mullins CD, Pantalone KM, Betts KA et al (2022) CKD Progression and economic burden in individuals with CKD associated with type 2 diabetes. Kidney Med 4(11):100532

    Article  PubMed  PubMed Central  Google Scholar 

  11. Li F, Li L, Cheng M et al (2017) SHIP, a novel factor to ameliorate extracellular matrix accumulation via suppressing PI3K/Akt/CTGF signaling in diabetic kidney disease. Biochem Biophys Res Commun 482(4):1477–1483

    Article  CAS  PubMed  Google Scholar 

  12. Liu B, Deng J, Jie X et al (2022) Protective effects of the Bupi Yishen formula on renal fibrosis through PI3K/AKT signaling inhibition. J Ethnopharmacol 293:115242

    Article  CAS  PubMed  Google Scholar 

  13. Sun T, Dong W, Jiang G et al (2019) Cordyceps militaris improves chronic kidney disease by affecting TLR4/NF-κB redox signaling pathway. Oxid Med Cell Longev 2019:7850863

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chade AR, Engel JE, Hall ME et al (2021) Intrarenal modulation of NF-κB activity attenuates cardiac injury in a swine model of CKD: a renal-cardio axis. Am J Physiol Renal Physiol 321(4):F411–F423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu G, Liu X, Chen Z et al (2016) Ozone therapy could attenuate tubulointerstitial injury in adenine-induced CKD rats by mediating Nrf2 and NF-κB. Iran J Basic Med Sci 19(10):1136–1143

    PubMed  PubMed Central  Google Scholar 

  16. Zhou S, He Y, Zhang W et al (2021) Ophiocordyceps lanpingensis polysaccharides alleviate chronic kidney disease through MAPK/NF-κB pathway. J Ethnopharmacol 276:114189

    Article  CAS  PubMed  Google Scholar 

  17. Gao X, Wu G, Gu X et al (2013) Kruppel-like factor 15 modulates renal interstitial fibrosis by ERK/MAPK and JNK/MAPK pathways regulation. Kidney Blood Press Res 37(6):631–640

    Article  CAS  PubMed  Google Scholar 

  18. Hong Z, Hong Z, Wu D et al (2016) Specific MAPK inhibitors prevent hyperglycemia-induced renal diseases in type 1 diabetic mouse model. Mol Cell Biochem 419(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  19. Chen D, Liu Y, Chen J et al (2021) JAK/STAT pathway promotes the progression of diabetic kidney disease via autophagy in podocytes. Eur J Pharmacol 902:174121

    Article  CAS  PubMed  Google Scholar 

  20. Tao J, Mariani L, Eddy S et al (2018) JAK-STAT signaling is activated in the kidney and peripheral blood cells of patients with focal segmental glomerulosclerosis. Kidney Int 94(4):795–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huffstater T, Merryman WD, Gewin LS (2020) Wnt/β-catenin in acute kidney injury and progression to chronic kidney disease. Semin Nephrol 40(2):126–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meldrum KK, Meldrum DR, Hile KL et al (2001) p38 MAPK mediates renal tubular cell TNF-alpha production and TNF-alpha-dependent apoptosis during simulated ischemia. Am J Physiol Cell Physiol 281(2):C563–C570

    Article  CAS  PubMed  Google Scholar 

  23. Wu R, Chen Z, Ma J et al (2022) Renal cancer stem cell-derived sEVs impair renal function by inducing renal cell ERS and apoptosis in mice. Transl Androl Urol 11(5):578–594

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goldbraikh D, Neufeld D, Eid-Mutlak Y et al (2020) USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep 21(4):e48791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lien EC, Dibble CC, Toker A (2017) PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 45:62–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park JY, Lin PY, Weiss RH (2007) Targeting the PI3K-Akt pathway in kidney cancer. Expert Rev Anticancer Ther 7(6):863–870

    Article  CAS  PubMed  Google Scholar 

  27. Chen Q, Duan X, Fan H et al (2017) Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. Int Immunopharmacol 53:149–157

    Article  CAS  PubMed  Google Scholar 

  28. Xu Y, Sui L, Qiu B et al (2019) ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. Am J Physiol Cell Physiol 316(4):C481–C491

    Article  CAS  PubMed  Google Scholar 

  29. Aytenfisu TY, Campbell HM, Chakrabarti M et al (2022) Class I PI3K Biology. Curr Top Microbiol Immunol 436:3–49

    Article  CAS  PubMed  Google Scholar 

  30. Wisessaowapak C, Watcharasit P, Satayavivad J (2021) Arsenic disrupts neuronal insulin signaling through increasing free PI3K-p85 and decreasing PI3K activity. Toxicol Lett 349:40–50

    Article  CAS  PubMed  Google Scholar 

  31. Cohen S, Lee D, Zhai B et al (2014) Trim32 reduces PI3K-Akt-FoxO signaling in muscle atrophy by promoting plakoglobin-PI3K dissociation. J Cell Biol 204(5):747–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ueki K, Fruman DA, Yballe CM et al (2003) Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J Biol Chem 278(48):48453–48466

    Article  CAS  PubMed  Google Scholar 

  33. Reif K, Gout I, Waterfield MD et al (1993) Divergent regulation of phosphatidylinositol 3-kinase P85 alpha and P85 beta isoforms upon T cell activation. J Biol Chem

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bao F, Hao P, An S et al (2021) Akt scaffold proteins: the key to controlling specificity of Akt signaling. Am J Physiol Cell Physiol 321(3):C429–C442

    CAS  PubMed  Google Scholar 

  35. Wei Y, Zhou J, Yu H et al (2019) AKT phosphorylation sites of Ser473 and Thr308 regulate AKT degradation. Biosci Biotechnol Biochem 83(3):429–435

    Article  CAS  PubMed  Google Scholar 

  36. Kim D, Sun M, He L et al (2010) A small molecule inhibits Akt through direct binding to Akt and preventing Akt membrane translocation. J Biol Chem 285(11):8383–8394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar CC, Madison V (2005) AKT crystal structure and AKT-specific inhibitors. Oncogene 24(50):7493–7501

    Article  CAS  PubMed  Google Scholar 

  38. Støle TP, Lunde M, Shen X et al (2022) The female syndecan-4(−/−) heart has smaller cardiomyocytes, augmented insulin/pSer473-Akt/pSer9-GSK-3β signaling, and lowered SCOP, pThr308-Akt/Akt and GLUT4 levels. Front Cell Dev Biol 10:908126 268(15):10780–10788

    Article  CAS  PubMed  Google Scholar 

  39. Ge F, Wang F, Yan X et al (2017) Association of BAFF with PI3K/Akt/mTOR signaling in lupus nephritis. Mol Med Rep 16(5):5793–5798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ye J, Gong M, Song J et al (2022) Integrating inflammation-responsive prodrug with electrospun nanofibers for anti-inflammation application. Pharmaceutics 14(6):1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mack M (2018) Inflammation and fibrosis. Matrix Biol 68–69:106–121

    Article  PubMed  Google Scholar 

  42. Greenberg JH, Abraham AG, Xu Y et al (2020) Plasma biomarkers of tubular injury and inflammation are associated with CKD progression in children. J Am Soc Nephrol 31(5):1067–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amdur RL, Feldman HI, Gupta J et al (2016) Inflammation and progression of CKD: the CRIC study. Clin J Am Soc Nephrol 11(9):1546–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bernelot Moens SJ, Verweij SL, Van Der Valk FM et al (2017) Arterial and cellular inflammation in patients with CKD. J Am Soc Nephrol 28(4):1278–1285

    Article  PubMed  Google Scholar 

  45. Speer T, Dimmeler S, Schunk SJ et al (2022) Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat Rev Nephrol 18(12):762–778

    Article  PubMed  Google Scholar 

  46. Lei L, Zhao J, Liu XQ et al (2021) Wogonin alleviates kidney tubular epithelial injury in diabetic nephropathy by inhibiting PI3K/Akt/NF-κB signaling pathways. Drug Des Dev Ther 15:3131–3150

    Article  Google Scholar 

  47. Ma Z, Liu Y, Li C et al (2022) Repurposing a clinically approved prescription Colquhounia root tablet to treat diabetic kidney disease via suppressing PI3K/AKT/NF-kB activation. Chin Med 17(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao C, Fei X, Wang M et al (2022) Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int Immunopharmacol 107:108610

    Article  CAS  PubMed  Google Scholar 

  49. Arab HH, Salama SA, Maghrabi IA (2018) Camel milk attenuates methotrexate-induced kidney injury via activation of PI3K/Akt/eNOS signaling and intervention with oxidative aberrations. Food Funct 9(5):2661–2672

    Article  CAS  PubMed  Google Scholar 

  50. Gao L, Yuan P, Zhang Q et al (2020) Taxifolin improves disorders of glucose metabolism and water-salt metabolism in kidney via PI3K/AKT signaling pathway in metabolic syndrome rats. Life Sci 263:118713

    Article  CAS  PubMed  Google Scholar 

  51. Sies H, Berndt C, Jones DP (2017) Oxidative stress. Annu Rev Biochem 86:715–748

    Article  CAS  PubMed  Google Scholar 

  52. Mooli RGR, Mukhi D, Ramakrishnan SK (2022) Oxidative stress and redox signaling in the pathophysiology of liver diseases. Compr Physiol 12(2):3167–3192

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ebert T, Tran N, Schurgers L et al (2022) Ageing—oxidative stress, PTMs and disease. Mol Asp Med 86:101099

    Article  CAS  Google Scholar 

  54. Daenen K, Andries A, Mekahli D et al (2019) Oxidative stress in chronic kidney disease. Pediatr Nephrol 34(6):975–991

    Article  PubMed  Google Scholar 

  55. Ali BH, Al-Salam S, Al Suleimani Y et al (2018) Curcumin ameliorates kidney function and oxidative stress in experimental chronic kidney disease. Basic Clin Pharmacol Toxicol 122(1):65–73

    Article  CAS  PubMed  Google Scholar 

  56. Jha JC, Banal C, Chow BS et al (2016) Diabetes and kidney disease: role of oxidative stress. Antioxid Redox Signal 25(12):657–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ravarotto V, Simioni F, Pagnin E et al (2018) Oxidative stress—chronic kidney disease—cardiovascular disease: a vicious circle. Life Sci 210:125–131

    Article  CAS  PubMed  Google Scholar 

  58. Nakanishi T, Nanami M, Kuragano T (2020) The pathogenesis of CKD complications; attack of dysregulated iron and phosphate metabolism. Free Radic Biol Med 157:55–62

    Article  CAS  PubMed  Google Scholar 

  59. Yang M, Fox CH, Vassalotti J et al (2011) Complications of progression of CKD. Adv Chronic Kidney Dis 18(6):400–405

    Article  PubMed  Google Scholar 

  60. Ren Y, Du C, Shi Y et al (2017) The Sirt1 activator, SRT1720, attenuates renal fibrosis by inhibiting CTGF and oxidative stress. Int J Mol Med 39(5):1317–1324

    Article  CAS  PubMed  Google Scholar 

  61. Wu Y, Wang L, Wang X et al (2018) Renalase contributes to protection against renal fibrosis via inhibiting oxidative stress in rats. Int Urol Nephrol 50(7):1347–1354

    Article  CAS  PubMed  Google Scholar 

  62. Kaeidi A, Taghipour Z, Allahtavakoli M et al (2020) Ameliorating effect of troxerutin in unilateral ureteral obstruction induced renal oxidative stress, inflammation, and apoptosis in male rats. Naunyn Schmiedebergs Arch Pharmacol 393(5):879–888

    Article  CAS  PubMed  Google Scholar 

  63. Wang M, Hu R, Wang Y et al (2019) Atractylenolide III attenuates muscle wasting in chronic kidney disease via the oxidative stress-mediated PI3K/AKT/mTOR pathway. Oxid Med Cell Longev 2019:1875471

    PubMed  PubMed Central  Google Scholar 

  64. Liu P, Xue Y, Zheng B et al (2020) Crocetin attenuates the oxidative stress, inflammation and apoptosisin arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 88:106959

    Article  CAS  PubMed  Google Scholar 

  65. Guan T, Zheng Y, Jin S et al (2022) Troxerutin alleviates kidney injury in rats via PI3K/AKT pathway by enhancing MAP4 expression. Food Nutr Res. https://doi.org/10.29219%2Ffnr.v66.8469

  66. Wang D, Jin M, Zhao X et al (2019) FGF1(ΔHBS) ameliorates chronic kidney disease via PI3K/AKT mediated suppression of oxidative stress and inflammation. Cell Death Dis 10(6):464

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pollak N, Lindner A, Imig D et al (2021) Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis. J Cell Sci 134(24): jcs258966. https://doi.org/10.1242/jcs.258966

    Article  CAS  PubMed  Google Scholar 

  68. Grilo AL, Mantalaris A (2019) Apoptosis: a mammalian cell bioprocessing perspective. Biotechnol Adv 37(3):459–475

    Article  CAS  PubMed  Google Scholar 

  69. Chi Y, Zhang X, Liang D et al (2023) ZnT8 exerts anti-apoptosis of kidney tubular epithelial cell in diabetic kidney disease through TNFAIP3-NF-κB signal pathways. Biol Trace Elem Res 201(5):2442–2457

    Article  CAS  PubMed  Google Scholar 

  70. Wei X, Ma Y, Li Y et al (2022) Anti-apoptosis of podocytes and pro-apoptosis of mesangial cells for telmisartan in alleviating diabetic kidney injury. Front Pharmacol 13:876469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ma T, Li H, Liu H et al (2022) Neat1 promotes acute kidney injury to chronic kidney disease by facilitating tubular epithelial cells apoptosis via sequestering miR-129-5p. Mol Ther 30(10):3313–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li S, Wang D, Zhang M et al (2022) Taurine ameliorates apoptosis via AKT pathway in the kidney of diabetic rats. Adv Exp Med Biol 1370:227–233

    Article  CAS  PubMed  Google Scholar 

  73. Jung K, Lee T, Kim J et al (2022) Interleukin-10 protects against ureteral obstruction-induced kidney fibrosis by suppressing endoplasmic reticulum stress and apoptosis. Int J Mol Sci 23(18):10702. https://doi.org/10.3390/ijms231810702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alasmari AF, Ali N, Alharbi M et al (2022) Geraniol ameliorates doxorubicin-mediated kidney injury through alteration of antioxidant status, inflammation, and apoptosis: potential roles of NF-κB and Nrf2/Ho-1. Nutrients 14(8):1620. https://doi.org/10.3390/nu14081620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tu H, Ma D, Luo Y et al (2021) Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered 12(1):6538–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma SK, Joo SY, Kim CS et al (2013) Increased phosphorylation of PI3K/Akt/mTOR in the obstructed kidney of rats with unilateral ureteral obstruction. Chonnam Med J 49(3):108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li D, Yu K, Feng F et al (2022) Hydroxychloroquine alleviates renal interstitial fibrosis by inhibiting the PI3K/Akt signaling pathway. Biochem Biophys Res Commun 610:154–161

    Article  CAS  PubMed  Google Scholar 

  78. Condello M, Pellegrini E, Caraglia M et al (2019) Targeting autophagy to overcome human diseases. Int J Mol Sci 20(3):725. https://doi.org/10.3390/ijms20030725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fu L, Wu W, Sun X et al (2020) Glucocorticoids enhanced osteoclast autophagy through the PI3K/Akt/mTOR signaling pathway. Calcif Tissue Int 107(1):60–71

    Article  CAS  PubMed  Google Scholar 

  80. Wang L, Yu T, Dong F et al (2023) Tongqiao Mingmu formula alleviates retinal ganglion cell autophagy through PI3K/AKT/mTOR pathway. Anat Rec (Hoboken) 306(12):3120–3130

    Article  CAS  PubMed  Google Scholar 

  81. Lee JA, Shin MR, Roh SS (2022) Corni fructus alleviates UUO-induced renal fibrosis via TGF-β/smad signaling. Biomed Res Int 2022:5780964

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dong R, Zhang X, Liu Y et al (2023) Rutin alleviates EndMT by restoring autophagy through inhibiting HDAC1 via PI3K/AKT/mTOR pathway in diabetic kidney disease. Phytomedicine 112:154700

    Article  CAS  PubMed  Google Scholar 

  83. di Tu Q, Jin J, Hu X et al (2020) Curcumin improves the renal autophagy in rat experimental membranous nephropathy via regulating the PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. Biomed Res Int 2020:7069052

    PubMed  PubMed Central  Google Scholar 

  84. Kma L, Baruah TJ (2022) The interplay of ROS and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl Biochem 69(1):248–264

    Article  CAS  PubMed  Google Scholar 

  85. He J, Deng L, Liu H et al (2019) BCL2L10/BECN1 modulates hepatoma cells autophagy by regulating PI3K/AKT signaling pathway. Aging (Albany NY) 11(2):350–370

    Article  CAS  PubMed  Google Scholar 

  86. Lu R, Chen J, Liu B et al (2020) Protective role of Astragaloside IV in chronic glomerulonephritis by activating autophagy through PI3K/AKT/AS160 pathway. Phytother Res 34(12):3236–3248

    Article  CAS  PubMed  Google Scholar 

  87. Du C, Zhang T, Xiao X et al (2017) Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via the PI3K/Akt/mTOR signalling pathway. Biochem J 474(16):2733–2747

    Article  CAS  PubMed  Google Scholar 

  88. Wang X, Jiang L, Liu XQ et al (2022) Paeoniflorin binds to VEGFR2 to restore autophagy and inhibit apoptosis for podocyte protection in diabetic kidney disease through PI3K-AKT signaling pathway. Phytomedicine 106:154400

    Article  CAS  PubMed  Google Scholar 

  89. Zhuang L, Jin G, Hu X et al (2019) The inhibition of SGK1 suppresses epithelial-mesenchymal transition and promotes renal tubular epithelial cell autophagy in diabetic nephropathy. Am J Transl Res 11(8):4946–4956

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Klinkhammer BM, Goldschmeding R, Floege J et al (2017) Treatment of renal fibrosis-turning challenges into opportunities. Adv Chronic Kidney Dis 24(2):117–129

    Article  PubMed  Google Scholar 

  91. Thiery JP, Acloque H, Huang RY et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    Article  CAS  PubMed  Google Scholar 

  92. Li L, Zhou G, Fu R et al (2021) Polysaccharides extracted from balanophora polyandra Griff (BPP) ameliorate renal fibrosis and EMT via inhibiting the Hedgehog pathway. J Cell Mol Med 25(6):2828–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhou T, Luo M, Cai W et al (2018) Runt-related transcription factor 1 (RUNX1) promotes TGF-β-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110δ. EBioMedicine 31:217–225

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhou J, Cheng H, Wang Z et al (2019) Bortezomib attenuates renal interstitial fibrosis in kidney transplantation via regulating the EMT induced by TNF-α-Smurf1-Akt-mTOR-P70S6K pathway. J Cell Mol Med 23(8):5390–5402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hong W, Zhang G, Lu H et al (2019) Epithelial and interstitial Notch1 activity contributes to the myofibroblastic phenotype and fibrosis. Cell Commun Signal 17(1):145

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang Z, Divanyan A, Jourd’Heuil FL et al (2018) Vimentin expression is required for the development of EMT-related renal fibrosis following unilateral ureteral obstruction in mice. Am J Physiol Ren Physiol 315(4):F769–F780

    Article  CAS  Google Scholar 

  97. Peng Y, Li F, Zhang P et al (2020) IGF-1 promotes multiple myeloma progression through PI3K/Akt-mediated epithelial-mesenchymal transition. Life Sci 249:117503

    Article  CAS  PubMed  Google Scholar 

  98. Zhang C, Su L, Huang L et al (2018) GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/Akt pathways. Int J Ophthalmol 11(7):1120–1128

    PubMed  PubMed Central  Google Scholar 

  99. Xue M, Cheng Y, Han F et al (2018) Triptolide attenuates renal tubular epithelial-mesenchymal transition via the MiR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease. Int J Biol Sci 14(11):1545–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu Z, Jia K, Wang H et al (2021) METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death Dis 12(1):32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hu T, Chen F, Chen D et al (2022) DNMT3a negatively regulates PTEN to activate the PI3K/AKT pathway to aggravate renal fibrosis. Cell Signal 96:110352

    Article  CAS  PubMed  Google Scholar 

  102. Hakim S, Dyson JM, Feeney SJ et al (2016) Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet 25(11):2295–2313

    Article  CAS  PubMed  Google Scholar 

  103. Chen H, Li P, Shen Z et al (2021) Protective effects of selenium yeast against cadmium-induced necroptosis through miR-26a-5p/PTEN/PI3K/AKT signaling pathway in chicken kidney. Ecotoxicol Environ Saf 220:112387

    Article  CAS  PubMed  Google Scholar 

  104. Song Y, Liu W, Zhao Y et al (2021) Fumonisin B1 exposure induces apoptosis of human kidney tubular epithelial cells through regulating PTEN/PI3K/AKT signaling pathway via disrupting lipid raft formation. Toxicon 204:31–36

    Article  CAS  PubMed  Google Scholar 

  105. Wang J, Zhu H, Huang L et al (2019) Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways. Exp Mol Pathol 111:104296

    Article  CAS  PubMed  Google Scholar 

  106. Higgins DF, Ewart LM, Masterson E et al (2017) BMP7-induced-Pten inhibits Akt and prevents renal fibrosis. Biochim Biophys Acta 1863(12):3095–3104

    Article  CAS  Google Scholar 

  107. Kwon DS, Kwon CH, Kim JH et al (2006) Signal transduction of MEK/ERK and PI3K/Akt activation by hypoxia/reoxygenation in renal epithelial cells. Eur J Cell Biol 85(11):1189–1199

    Article  CAS  PubMed  Google Scholar 

  108. Li M, Jiang T, Zhang W et al (2020) Human umbilical cord MSC-derived hepatocyte growth factor enhances autophagy in AOPP-treated HK-2 cells. Exp Ther Med 20(3):2765–2773

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Shen Q, Zhang X, Li Q et al (2019) TLR2 protects cisplatin-induced acute kidney injury associated with autophagy via PI3K/Akt signaling pathway. J Cell Biochem 120(3):4366–4374

    Article  CAS  PubMed  Google Scholar 

  110. Liu Y, Liu YE, Tong CC et al (2020) CD28 deficiency attenuates primary blast-induced renal injury in mice via the PI3K/Akt signalling pathway. BMJ Milit Health 166(1):e66–e69

    Article  Google Scholar 

  111. Lu Q, Wang WW, Zhang MZ et al (2019) ROS induces epithelial-mesenchymal transition via the TGF-β1/PI3K/Akt/mTOR pathway in diabetic nephropathy. Exp Ther Med 17(1):835–846

    CAS  PubMed  Google Scholar 

  112. Lu J, Shi J, Gui B et al (2016) Activation of PPAR-γ inhibits PDGF-induced proliferation of mouse renal fibroblasts. Eur J Pharmacol 789:222–228

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Sun J, Xie L, Lv J et al (2019) Inhibitor of growth 4 inhibits cell proliferation, migration, and induces apoptosis of renal cell carcinoma cells. J Cell Biochem 120(4):6709–6717

    Article  CAS  PubMed  Google Scholar 

  114. Feng W, Xie H, Li J et al (2022) miR-29c inhibits renal interstitial fibrotic proliferative properties through PI3K-AKT pathway. Appl Bionics Biomech 2022:6382323

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hou D, Wu Q, Wang S et al (2022) Knockdown of miR-214 alleviates renal interstitial fibrosis by targeting the regulation of the PTEN/PI3K/AKT signalling pathway. Oxid Med Cell Longev 2022:7553928

    Article  PubMed  PubMed Central  Google Scholar 

  116. Cui L, Yu M, Cui X (2020) MiR-30c-5p/ROCK2 axis regulates cell proliferation, apoptosis and EMT via the PI3K/AKT signaling pathway in HG-induced HK-2 cells. Open life Sci 15(1):959–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Xiang J, Jiang T, Zhang W et al (2019) Human umbilical cord-derived mesenchymal stem cells enhanced HK-2 cell autophagy through MicroRNA-145 by inhibiting the PI3K/AKT/mTOR signaling pathway. Exp Cell Res 378(2):198–205

    Article  CAS  PubMed  Google Scholar 

  118. Zang XJ, Li L, Du X et al (2019) LncRNA TUG1 inhibits the proliferation and fibrosis of mesangial cells in diabetic nephropathy via inhibiting the PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 23(17):7519–7525

    PubMed  Google Scholar 

  119. Xiao Q (2022) Cinnamaldehyde attenuates kidney senescence and injury through PI3K/Akt pathway-mediated autophagy via downregulating miR-155. Ren Fail 44(1):601–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang T, Zhu H, Yang S et al (2019) Let-7a-5p may participate in the pathogenesis of diabetic nephropathy through targeting HMGA2. Mol Med Rep 19(5):4229–4237

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Hu S, Hu H, Wang R et al (2021) microRNA-29b prevents renal fibrosis by attenuating renal tubular epithelial cell-mesenchymal transition through targeting the PI3K/AKT pathway. Int Urol Nephrol 53(9):1941–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mo T, Fu Q, Hu X et al (2022) MicroRNA 1228 mediates the viability of high glucose-cultured renal tubule cells through targeting thrombospondin 2 and PI3K/AKT signaling pathway. Kidney Blood Press Res 47(1):1–12

    Article  CAS  PubMed  Google Scholar 

  123. Li M, Li W, Ren FQ et al (2020) miRNA-186 improves sepsis induced renal injury via PTEN/PI3K/AKT/P53 pathway. Open Med (Warsaw, Poland) 15:254–260

    Article  CAS  Google Scholar 

  124. Han N, Li H, Wang H (2020) MicroRNA-203 inhibits epithelial-mesenchymal transition, migration, and invasion of renal cell carcinoma cells via the inactivation of the PI3K/AKT signaling pathway by inhibiting CAV1. Cell Adhes Migr 14(1):227–241

    Article  CAS  Google Scholar 

  125. Guo J (2021) Effect of miR-21 on renal fibrosis induced by nano-SiO2 in diabetic nephropathy rats via PTEN/AKT pathway. J Nanosci Nanotechnol 21(2):1079–1084

    Article  CAS  PubMed  Google Scholar 

  126. Tian X, Ji Y, Liang Y et al (2019) LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J Cell Physiol 234(8):14221–14233

    Article  CAS  PubMed  Google Scholar 

  127. Shi CH, Huang Y, Li WQ et al (2019) Influence of LncRNA UCA1 on glucose metabolism in rats with diabetic nephropathy through PI3K-Akt signaling pathway. Eur Rev Med Pharmacol Sci 23(22):10058–10064

    PubMed  Google Scholar 

  128. Dou F, Liu Y, Liu L et al (2019) Aloe-emodin ameliorates renal fibrosis via inhibiting PI3K/Akt/mTOR signaling pathway in vivo and in vitro. Rejuvenation Res 22(3):218–229

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y, Pejchinovski M, Wang X et al (2018) Dual mTOR/PI3K inhibition limits PI3K-dependent pathways activated upon mTOR inhibition in autosomal dominant polycystic kidney disease. Sci Rep 8(1):5584

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  130. Yu S, Zhao H, Yang W et al (2019) The alcohol extract of Coreopsis tinctoria Nutt ameliorates diabetes and diabetic nephropathy in db/db mice through miR-192/miR-200b and PTEN/AKT and ZEB2/ECM pathways. Biomed Res Int 2019:5280514

    Article  PubMed  PubMed Central  Google Scholar 

  131. Liu H, Li X, Duan Y et al (2021) Mechanism of gypenosides of Gynostemma pentaphyllum inducing apoptosis of renal cell carcinoma by PI3K/AKT/mTOR pathway. J Ethnopharmacol 271:113907

    Article  CAS  PubMed  Google Scholar 

  132. Li Y, Zhang L, Xiong W et al (2022) A molecular mechanism study to reveal Hirudin’s downregulation to PI3K/AKT signaling pathway through decreasing PDGFRβ in renal fibrosis treatment. Biomed Res Int 2022:5481552

    PubMed  PubMed Central  Google Scholar 

  133. Huang G, Lv J, Li T et al (2016) Notoginsenoside R1 ameliorates podocyte injury in rats with diabetic nephropathy by activating the PI3K/Akt signaling pathway. Int J Mol Med 38(4):1179–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wang S, Wang J, Yang L et al (2019) Swainsonine induces autophagy via PI3K/AKT/mTOR signaling pathway to injure the renal tubular epithelial cells. Biochimie 165:131–140

    Article  CAS  PubMed  Google Scholar 

  135. Liu B, Cao Y, Wang D et al (2021) Zhen-Wu-Tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways. Front Pharmacol 12:777670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Meng F, Zhang Z, Chen C et al (2021) PI3K/AKT activation attenuates acute kidney injury following liver transplantation by inducing FoxO3a nuclear export and deacetylation. Life Sci 272:119119

    Article  CAS  PubMed  Google Scholar 

  137. Gong Q, Ma J, Kang H et al (2022) Fractalkine deficiency attenuates LPS-induced acute kidney injury and podocyte apoptosis by targeting the PI3K/Akt signal pathway. Clin Exp Nephrol 26(8):741–749

    Article  CAS  PubMed  Google Scholar 

  138. Na N, Zhao D, Zhang J et al (2020) Carbamylated erythropoietin regulates immune responses and promotes long-term kidney allograft survival through activation of PI3K/AKT signaling. Signal Transduct Target Ther 5(1):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. He P, Lei J, Miao JN et al (2020) Cordyceps sinensis attenuates HBx-induced cell apoptosis in HK-2 cells through suppressing the PI3K/Akt pathway. Int J Mol Med 45(4):1261–1269

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Key Program of Hebei Natural Science foundation of traditional Chinese Medicine, H2022423351.

Author information

Authors and Affiliations

Authors

Contributions

XTW, YZ, and HSW contributed to the study idea and study design. LJG, FF, JZL, CCZ and HSW contributed to the literature search. HSW and ZW performed the literature summary. XTW and YZ provided supervision and guidance.

Corresponding authors

Correspondence to Yan Zhong or Xiangting Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human ethics

Not applicable.

Consent for publication

All the authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gao, L., Zhao, C. et al. The role of PI3K/Akt signaling pathway in chronic kidney disease. Int Urol Nephrol (2024). https://doi.org/10.1007/s11255-024-03989-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11255-024-03989-8

Keywords

Navigation