Skip to main content

Advertisement

Log in

Urinary cadmium was linearly and positively associated with cardiac infarction/injury score and subclinical myocardial injury in the general population without cardiovascular diseases and chronic kidney disease

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

The study was to investigate the association between urinary cadmium with cardiac infarction/injury score (CIIS) and subclinical myocardial injury (SC-MI) in the general population without cardiovascular diseases (CVDs) and chronic kidney disease (CKD).

Methods

In this large-scale cross-sectional study, we enrolled 4492 individuals without CVDs and CKD from the third National Health and Nutrition Examination Survey. Logistic regression models, linear regression models, subgroup analyses, and restricted cubic spline (RCS) were performed to assess the association between urinary cadmium with CIIS and SC-MI.

Results

Participants with SC-MI had higher levels of urinary cadmium compared with those without SC-MI (P < 0.001). In multivariate regression analyses adjusting for all confounding variables, higher levels of urinary cadmium were strongly associated not only with higher risk of SC-MI but also with higher CIIS (P < 0.05). Further subgroup analyses showed that the association between urinary cadmium and SC-MI remained significant in the subgroups of ≥ 50 years, men, smokers, and those without diabetes or hypertension (P < 0.05). Additionally, RCS analysis showed that after adjusting for all confounding factors, urinary cadmium was linearly and positively associated with CIIS and SC-MI (P overall < 0.05, P for nonlinearity > 0.05).

Conclusion

Urinary cadmium was linearly and positively associated with CIIS and SC-MI in the general population without CVDs and CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data for the analysis of this study can be downloaded from a public database (https://www.cdc.gov/nchs/nhanes/index.htm).

References

  1. Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, Bonny A, Brauer M, Brodmann M, Cahill TJ, Carapetis J, Catapano AL, Chugh SS, Cooper LT, Coresh J, Criqui M, DeCleene N, Eagle KA, Emmons-Bell S, Feigin VL, Fernández-Solà J, Fowkes G, Gakidou E, Grundy SM, He FJ, Howard G, Hu F, Inker L, Karthikeyan G, Kassebaum N, Koroshetz W, Lavie C, Lloyd-Jones D, Lu HS, Mirijello A, Temesgen AM, Mokdad A, Moran AE, Muntner P, Narula J, Neal B, Ntsekhe M, Moraes de Oliveira G, Otto C, Owolabi M, Pratt M, Rajagopalan S, Reitsma M, Ribeiro ALP, Rigotti N, Rodgers A, Sable C, Shakil S, Sliwa-Hahnle K, Stark B, Sundström J, Timpel P, Tleyjeh IM, Valgimigli M, Vos T, Whelton PK, Yacoub M, Zuhlke L, Murray C, Fuster V, GBD-NHLBI-JACC Global Burden of Cardiovascular Diseases Writing Group (2020) Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study [published correction appears in J Am Coll Cardiol. 2021 Apr 20;77(15):1958-1959]. J Am Coll Cardiol 76:2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lamas GA, Ujueta F, Navas-Acien A (2021) Lead and cadmium as cardiovascular risk factors: the burden of proof has been met. J Am Heart Assoc 10:e018692. https://doi.org/10.1161/JAHA.120.018692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin HC, Hao WM, Chu PH (2021) Cadmium and cardiovascular disease: an overview of pathophysiology, epidemiology, therapy, and predictive value. Rev Port Cardiol (Engl Ed) 40:611–617. https://doi.org/10.1016/j.repce.2021.07.031

    Article  PubMed  Google Scholar 

  4. Perry HM Jr, Thind GS, Perry EF (1976) The biology of cadmium. Med Clin N Am 60:759–769. https://doi.org/10.1016/s0025-7125(16)31859-4

    Article  CAS  PubMed  Google Scholar 

  5. Waalkes MP (2003) Cadmium carcinogenesis. Mutat Res 533:107–120. https://doi.org/10.1016/j.mrfmmm.2003.07.011

    Article  CAS  PubMed  Google Scholar 

  6. Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, Rudisill C (2012) Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry (US), Atlanta

    Google Scholar 

  7. Järup L, Akesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208. https://doi.org/10.1016/j.taap.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  8. Ellingsen DG, Chashchin M, Berlinger B, Fedorov V, Chashchin V, Thomassen Y (2017) Biological monitoring of welders’ exposure to chromium, molybdenum, tungsten and vanadium. J Trace Elem Med Biol 41:99–106. https://doi.org/10.1016/j.jtemb.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  9. Khan MA, Khan S, Khan A, Alam M (2017) Soil contamination with cadmium, consequences and remediation using organic amendments. Sci Total Environ 601–602:1591–1605. https://doi.org/10.1016/j.scitotenv.2017.06.030

    Article  CAS  PubMed  Google Scholar 

  10. Olsson IM, Eriksson J, Oborn I, Skerfving S, Oskarsson A (2005) Cadmium in food production systems: a health risk for sensitive population groups. Ambio 34:344–351. https://doi.org/10.1639/0044-7447(2005)034[0344:cifpsa]2.0.co;2

    Article  PubMed  Google Scholar 

  11. Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E, Roels HA, Carleer R, Staessen JA (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103:30–37. https://doi.org/10.1016/j.envres.2006.05.009

    Article  CAS  PubMed  Google Scholar 

  12. Mezynska M, Brzóska MM (2018) Environmental exposure to cadmium-a risk for health of the general population in industrialized countries and preventive strategies. Environ Sci Pollut Res Int 25:3211–3232. https://doi.org/10.1007/s11356-017-0827-z

    Article  CAS  PubMed  Google Scholar 

  13. Satarug S, Garrett SH, Sens MA, Sens DA (2010) Cadmium, environmental exposure, and health outcomes. Environ Health Perspect 118:182–190. https://doi.org/10.1289/ehp.0901234

    Article  CAS  PubMed  Google Scholar 

  14. Filippini T, Torres D, Lopes C, Carvalho C, Moreira P, Naska A, Kasdagli MI, Malavolti M, Orsini N, Vinceti M (2020) Cadmium exposure and risk of breast cancer: a dose-response meta-analysis of cohort studies. Environ Int 142:105879. https://doi.org/10.1016/j.envint.2020.105879

    Article  CAS  PubMed  Google Scholar 

  15. Jalili C, Kazemi M, Taheri E, Mohammadi H, Boozari B, Hadi A, Moradi S (2020) Exposure to heavy metals and the risk of osteopenia or osteoporosis: a systematic review and meta-analysis. Osteoporos Int 31:1671–1682. https://doi.org/10.1007/s00198-020-05429-6

    Article  CAS  PubMed  Google Scholar 

  16. Tsai TL, Kuo CC, Pan WH, Chung YT, Chen CY, Wu TN, Wang SL (2017) The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int 92:710–720. https://doi.org/10.1016/j.kint.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  17. Knoell DL, Wyatt TA (2021) The adverse impact of cadmium on immune function and lung host defense. Semin Cell Dev Biol 115:70–76. https://doi.org/10.1016/j.semcdb.2020.10.007

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Xu X, Zeng Z, Lin X, Qin Q, Huo X (2019) Blood lead and cadmium levels associated with hematological and hepatic functions in patients from an e-waste-polluted area. Chemosphere 220:531–538. https://doi.org/10.1016/j.chemosphere.2018.12.129

    Article  CAS  PubMed  Google Scholar 

  19. Bergström G, Fagerberg B, Sallsten G, Lundh T, Barregard L (2015) Is cadmium exposure associated with the burden, vulnerability and rupture of human atherosclerotic plaques? PLoS ONE 10:e0121240. https://doi.org/10.1371/journal.pone.0121240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong EM, Moon CH, Kim CS, Lee SH, Baik EJ, Moon CK, Jung YS (2004) Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells. Biochem Biophys Res Commun 320:887–892. https://doi.org/10.1016/j.bbrc.2004.05.218

    Article  CAS  PubMed  Google Scholar 

  21. Dong F, Guo F, Li L, Guo L, Hou Y, Hao E, Yan S, Allen TD, Liu J (2014) Cadmium induces vascular permeability via activation of the p38 MAPK pathway. Biochem Biophys Res Commun 450:447–452. https://doi.org/10.1016/j.bbrc.2014.05.140

    Article  CAS  PubMed  Google Scholar 

  22. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK (2021) Heavy metal associated health hazards: an interplay of oxidative stress and signal transduction. Chemosphere 262:128350. https://doi.org/10.1016/j.chemosphere.2020.128350

    Article  CAS  PubMed  Google Scholar 

  23. Fujie T, Ito K, Ozaki Y, Takahashi S, Yamamoto C, Kaji T (2022) Induction of ZIP8, a ZIP transporter, via NF-κB signaling by the activation of IκBα and JNK signaling in cultured vascular endothelial cells exposed to cadmium. Toxicol Appl Pharmacol 434:115802. https://doi.org/10.1016/j.taap.2021.115802

    Article  CAS  PubMed  Google Scholar 

  24. Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjørklund G, Gatiatulina ER, Popova EV, Nemereshina ON, Huang PT, Vinceti M, Skalny AV (2018) Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res 162:240–260. https://doi.org/10.1016/j.envres.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  25. Martins AC, Almeida Lopes ACB, Urbano MR, Carvalho MFH, Silva AMR, Tinkov AA, Aschner M, Mesas AE, Silbergeld EK, Paoliello MMB (2021) An updated systematic review on the association between Cd exposure, blood pressure and hypertension. Ecotoxicol Environ Saf 208:111636. https://doi.org/10.1016/j.ecoenv.2020.111636

    Article  CAS  PubMed  Google Scholar 

  26. Xiao L, Zhu C, Yang S, Zhou M, Wang B, Wang X, Wang D, Ma J, Zhou Y, Chen W (2021) Assessment of the variability of urinary cadmium for general adults. Chemosphere 269:128752. https://doi.org/10.1016/j.chemosphere.2020.128752

    Article  CAS  PubMed  Google Scholar 

  27. Chen C, Xun P, Tsinovoi C, McClure LA, Brockman J, MacDonald L, Cushman M, Cai J, Kamendulis L, Mackey J, He K (2018) Urinary cadmium concentration and the risk of ischemic stroke. Neurology 91:e382–e391. https://doi.org/10.1212/WNL.0000000000005856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sears CG, Poulsen AH, Eliot M, Howe CJ, James KA, Harrington JM, Roswall N, Overvad K, Tjønneland A, Raaschou-Nielsen O, Wellenius GA, Meliker J (2021) Urine cadmium and acute myocardial infarction among never smokers in the Danish diet. Cancer Health Cohort Environ Int 150:106428. https://doi.org/10.1016/j.envint.2021.106428

    Article  CAS  PubMed  Google Scholar 

  29. Sears CG, Eliot M, Raaschou-Nielsen O, Poulsen AH, Harrington JM, Howe CJ, James KA, Roswall N, Overvad K, Tjønneland A, Meliker J, Wellenius GA (2022) Urinary cadmium and incident heart failure: a case-cohort analysis among never-smokers in Denmark. Epidemiology 33:185–192. https://doi.org/10.1097/EDE.0000000000001446

    Article  PubMed  PubMed Central  Google Scholar 

  30. Larsson SC, Wolk A (2016) Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: systematic review and meta-analysis of cohort studies. Int J Epidemiol 45:782–791. https://doi.org/10.1093/ije/dyv086

    Article  PubMed  Google Scholar 

  31. Wu YJ, Wang SB, Sun JT, Gu LF, Wang ZM, Deng B, Wang H, Wang LS (2023) Association between urinary cadmium level and subclinical myocardial injury in the general population without cardiovascular disease aged ≥ 50 years. Environ Sci Pollut Res Int 30:77551–77559. https://doi.org/10.1007/s11356-023-27923-0

    Article  CAS  PubMed  Google Scholar 

  32. German C, Ahmad MI, Li Y, Soliman EZ (2020) Relations between physical activity, subclinical myocardial injury, and cardiovascular mortality in the general population. Am J Cardiol 125:205–209. https://doi.org/10.1016/j.amjcard.2019.08.031

    Article  PubMed  Google Scholar 

  33. Pruszkowska E, Carnrick GR, Slavin W (1983) Direct determination of cadmium in urine with use of a stabilized temperature platform furnace and Zeeman background correction. Clin Chem 29:477–480

    Article  CAS  PubMed  Google Scholar 

  34. Paschal DC, Burt V, Caudill SP, Gunter EW, Pirkle JL, Sampson EJ, Miller DT, Jackson RJ (2000) Exposure of the U.S. population aged 6 years and older to cadmium: 1988–1994. Arch Environ Contam Toxicol 38:377–383. https://doi.org/10.1007/s002449910050

    Article  CAS  PubMed  Google Scholar 

  35. Rautaharju PM, Warren JW, Jain U, Wolf HK, Nielsen CL (1981) Cardiac infarction injury score: an electrocardiographic coding scheme for ischemic heart disease. Circulation 64:249–256. https://doi.org/10.1161/01.cir.64.2.249

    Article  CAS  PubMed  Google Scholar 

  36. van Domburg RT, Klootwijk P, Deckers JW, van Bergen PF, Jonker JJ, Simoons ML (1998) The cardiac infarction injury score as a predictor for long-term mortality in survivors of a myocardial infarction. Eur Heart J 19:1034–1041. https://doi.org/10.1053/euhj.1998.1011

    Article  PubMed  Google Scholar 

  37. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 67:2089–2100. https://doi.org/10.1111/j.1523-1755.2005.00365.x

    Article  PubMed  Google Scholar 

  38. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F, Collaboration CKDE (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate [published correction appears in Ann Intern Med. 2008 Oct 7;149(7):519] [published correction appears in Ann Intern Med. 2021 Apr; 174(4):584]. Ann Intern Med 145:247–254. https://doi.org/10.7326/0003-4819-145-4-200608150-00004

    Article  CAS  PubMed  Google Scholar 

  39. Cosselman KE, Navas-Acien A, Kaufman JD (2015) Environmental factors in cardiovascular disease. Nat Rev Cardiol 12:627–642. https://doi.org/10.1038/nrcardio.2015.152

    Article  CAS  PubMed  Google Scholar 

  40. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meliker JR, Vacchi-Suzzi C, Harrington J, Levine K, Lui LY, Bauer DC, Orwoll E, Kado DM (2019) Temporal stability of urinary cadmium in samples collected several years apart in a population of older persons. Int J Hyg Environ Health 222:230–234. https://doi.org/10.1016/j.ijheh.2018.10.005

    Article  CAS  PubMed  Google Scholar 

  42. Tellez-Plaza M, Guallar E, Howard BV, Umans JG, Francesconi KA, Goessler W, Silbergeld EK, Devereux RB, Navas-Acien A (2013) Cadmium exposure and incident cardiovascular disease. Epidemiology 24:421–429. https://doi.org/10.1097/EDE.0b013e31828b0631

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tellez-Plaza M, Guallar E, Fabsitz RR, Howard BV, Umans JG, Francesconi KA, Goessler W, Devereux RB, Navas-Acien A (2013) Cadmium exposure and incident peripheral arterial disease. Circ Cardiovasc Qual Outcomes 6:626–633. https://doi.org/10.1161/CIRCOUTCOMES.112.000134

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kwon JA, Park E, Kim S, Kim B (2022) Influence of serum ferritin combined with blood cadmium concentrations on blood pressure and hypertension: from the Korean National Health and Nutrition Examination Survey. Chemosphere 288:132469. https://doi.org/10.1016/j.chemosphere.2021.132469

    Article  CAS  PubMed  Google Scholar 

  45. Oliveira TF, Batista PR, Leal MA, Campagnaro BP, Nogueira BV, Vassallo DV, Meyrelles SS, Padilha AS (2019) Chronic cadmium exposure accelerates the development of atherosclerosis and induces vascular dysfunction in the aorta of ApoE-/- mice. Biol Trace Elem Res 187:163–171. https://doi.org/10.1007/s12011-018-1359-1

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Dong F, Wang F, Yan S, Chen X, Tozawa H, Ushijima T, Kapron CM, Wada Y, Liu J (2018) Low dose cadmium upregulates the expression of von Willebrand factor in endothelial cells. Toxicol Lett 290:46–54. https://doi.org/10.1016/j.toxlet.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  47. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43:184–195. https://doi.org/10.1016/j.ceca.2007.05.003

    Article  CAS  PubMed  Google Scholar 

  48. Domingo-Relloso A, Riffo-Campos AL, Haack K, Rentero-Garrido P, Ladd-Acosta C, Fallin DM, Tang WY, Herreros-Martinez M, Gonzalez JR, Bozack AK, Cole SA, Navas-Acien A, Tellez-Plaza M (2020) Cadmium, smoking, and human blood DNA methylation profiles in adults from the strong heart study. Environ Health Perspect 128:67005. https://doi.org/10.1289/EHP6345

    Article  CAS  PubMed  Google Scholar 

  49. Lin CY, Lee HL, Hwang YT, Huang PC, Wang C, Sung FC, Wu C, Su TC (2020) Urinary heavy metals, DNA methylation, and subclinical atherosclerosis. Ecotoxicol Environ Saf 204:111039. https://doi.org/10.1016/j.ecoenv.2020.111039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work thank the other investigators, the staff, and the participants of the NHANES III for their valuable contributions.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

YQ: Writing—review and editing. YQ and MH: Data curation, Writing—original draft. YQ and JY: Conceptualization, methodology, software. YQ: Conceptualization, funding acquisition, project administration, supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-wei Qiang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

The protocol was approved by the National Center for Health Statistics of the Center for Disease Control and Prevention Institutional Review Board. Written informed consent was acquired from all participants.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, Yw., Hao, Mh. & Yang, J. Urinary cadmium was linearly and positively associated with cardiac infarction/injury score and subclinical myocardial injury in the general population without cardiovascular diseases and chronic kidney disease. Int Urol Nephrol 56, 1677–1685 (2024). https://doi.org/10.1007/s11255-023-03853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03853-1

Keywords

Navigation