Skip to main content

Advertisement

Log in

Causal relationship between prostate cancer and 12 types of cancers: multivariable and bidirectional Mendelian randomization analyses

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Previous observational studies have shown an association between certain cancers and the subsequent risk of prostate cancer (PCa). However, the causal relationship between these cancers and PCa is still unclear. This study aimed to investigate the causal relationship between 12 common cancers and the risk of PCa.

Methods

We employed genome-wide association studies (GWAS) to perform forward and reverse Mendelian randomization (MR) within two-sample frameworks. Furthermore, we conducted multivariable MR analyses to investigate the relationships between different types of cancer. In addition, multiple sensitivity analysis methods were employed to assess the robustness of our findings.

Results

Our univariable MR analysis showed that genetically predicted hematological cancer was associated with a reduced risk of PCa (OR: 0.911, 95% CI 0.89–0.922, P = 0.03). Furthermore, MR analysis demonstrates that genetically predicted occurrence of thyroid gland and endocrine gland cancer also raised the risk of PCa (all P < 0.05). Multivariable analysis showed that thyroid gland cancer exhibited a higher incidence of PCa (OR: 1.12, 95% CI: 1.08–1.16, P = 0.008). In the reverse MR analysis, we found no significant inverse causal associations between PCa and 12 types of cancers.

Conclusion

In summary, this study provided insights into the causal relationships between various types of cancer and PCa. Hematological cancer was suggested to associate with a lower risk of PCa, while thyroid gland cancer and endocrine gland cancer might increase the risk. These findings contribute to the understanding of genetic factors related to PCa and its potential associations with other cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    Article  PubMed  Google Scholar 

  2. Clift AK, Drymousis P, Al-Nahhas A, Wasan H, Martin J, Holm S et al (2015) Incidence of second primary malignancies in patients with neuroendocrine tumours. Neuroendocrinology 102(1–2):26–32

    Article  CAS  PubMed  Google Scholar 

  3. Molina-Montes E, Requena M, Sánchez-Cantalejo E, Fernández MF, Arroyo-Morales M, Espín J et al (2015) Risk of second cancers cancer after a first primary breast cancer: a systematic review and meta-analysis. Gynecol Oncol 136(1):158–171

    Article  PubMed  Google Scholar 

  4. Collatuzzo G, Ferrante M, Ippolito A, Di Prima A, Colarossi C, Scarpulla S et al (2022) Second primary cancers following colorectal cancer in Sicily, Italy. Cancers 14(21):1

    Article  Google Scholar 

  5. Sung H, Hyun N, Leach CR, Yabroff KR, Jemal A (2020) Association of first primary cancer with risk of subsequent primary cancer among survivors of adult-onset cancers in the United States. JAMA 324(24):2521–2535

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nguyen-Nielsen M, Borre M (2016) Diagnostic and therapeutic strategies for prostate cancer. Semin Nucl Med 46(6):484–490

    Article  PubMed  Google Scholar 

  7. Chattopadhyay S, Zheng G, Hemminki O, Försti A, Sundquist K, Hemminki K (2018) Prostate cancer survivors: risk and mortality in second primary cancers. Cancer Med 7(11):5752–5759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Bermejo JL, Sundquist J, Hemminki K (2009) Prostate cancer as a first and second cancer: effect of family history. Br J Cancer 101(6):935–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neuzillet Y, Lechevallier E, Coulange C (2007) Renal cancer and second cancer: critical review of the literature. Progres en urologie: journal de l’Association francaise d’urologie et de la Societe francaise d’urologie 17(1):35–40

    Article  PubMed  Google Scholar 

  10. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ et al (2018) Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet 50(7):928–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:1

    Article  Google Scholar 

  13. Hemani G, Bowden J, Davey SG (2018) Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet 27(R2):R195-r208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tomaszewski JJ, Uzzo RG, Egleston B, Corcoran AT, Mehrazin R, Geynisman DM et al (2015) Coupling of prostate and thyroid cancer diagnoses in the United States. Ann Surg Oncol 22(3):1043–1049

    Article  PubMed  Google Scholar 

  17. Davis EJ, Beebe-Dimmer JL, Yee CL, Cooney KA (2014) Risk of second primary tumors in men diagnosed with prostate cancer: a population-based cohort study. Cancer 120(17):2735–2741

    Article  PubMed  Google Scholar 

  18. Ho AS, Daskivich TJ, Sacks WL, Zumsteg ZS (2019) Parallels between low-risk prostate cancer and thyroid cancer: a review. JAMA Oncol 5(4):556–564

    Article  PubMed  Google Scholar 

  19. Subramanian S, Goldstein DP, Parlea L, Thabane L, Ezzat S, Ibrahim-Zada I et al (2007) Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid Off J Am Thyroid Assoc 17(12):1277–1288

    Article  Google Scholar 

  20. Withrow DR, Schonfeld SJ, Curtis RE, Morton LM, Cook MB, Butler EN et al (2020) Racial and ethnic differences in risk of second primary cancers among prostate cancer survivors. Cancer Causes Control CCC 31(11):1011–1019

    Article  PubMed  Google Scholar 

  21. Cho YY, Lim J, Oh CM, Ryu J, Jung KW, Chung JH et al (2015) Elevated risks of subsequent primary malignancies in patients with thyroid cancer: a nationwide, population-based study in Korea. Cancer 121(2):259–268

    Article  PubMed  Google Scholar 

  22. Joung JY, Lim J, Oh CM, Jung KW, Cho H, Kim SH et al (2015) Risk of second primary cancer among prostate cancer patients in Korea: a population-based cohort study. PLoS ONE 10(10):e0140693

    Article  PubMed  PubMed Central  Google Scholar 

  23. Davey Smith G, Hemani G (2014) Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):R89-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yarmolinsky J, Wade KH, Richmond RC, Langdon RJ, Bull CJ, Tilling KM et al (2018) Causal inference in cancer epidemiology: what is the role of Mendelian randomization? Cancer Epidemiol Biomark Prev 27(9):995–1010

    Article  CAS  Google Scholar 

  25. Swerdlow DI, Kuchenbaecker KB, Shah S, Sofat R, Holmes MV, White J et al (2016) Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int J Epidemiol 45(5):1600–1616

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jin L, Xu L, Song X, Wei Q, Sturgis EM, Li G (2012) Genetic variation in MDM2 and p14ARF and susceptibility to salivary gland carcinoma. PLoS ONE 7(11):e49361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cybulski C, Górski B, Huzarski T, Masojć B, Mierzejewski M, Debniak T et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75(6):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petranović Ovčariček P, Verburg FA, Hoffmann M, Iakovou I, Mihailovic J, Vrachimis A et al (2021) Higher thyroid hormone levels and cancer. Eur J Nucl Med Mol Imaging 48(3):808–821

    Article  PubMed  Google Scholar 

  29. Costa AR, Lança de Oliveira M, Cruz I, Gonçalves I, Cascalheira JF, Santos CRA (2020) The sex bias of cancer. Trends Endocrinol Metab 31(10):785–799

    Article  CAS  PubMed  Google Scholar 

  30. Imai Y, Yamakawa M, Matsuda M, Kasajima T (1989) Endogenous sex hormone and estrogen binding activity in thyroid cancer. Histol Histopathol 4(1):39–45

    CAS  PubMed  Google Scholar 

  31. Sanderson E (2021) Multivariable Mendelian randomization and mediation. Cold Spring Harbor Perspect Med 11(2):1

    Article  Google Scholar 

  32. Burgess S, Thompson SG (2015) Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 181(4):251–260

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This statement is to certify that all authors have approved the manuscript being submitted, have contributed significantly to the work, and attest to the validity and legitimacy of the data and its interpretation.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

XZ, TC, and SX were responsible for data collection and analysis. The manuscript was written by SL, XD, SX, BF, and JD.

Corresponding author

Correspondence to Jun Deng.

Ethics declarations

Conflict of interest

There were no conflicts of interest in this study.

Ethics approval and consent to participate

The data is publicly available and ethics approval is not required.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, X., Chen, T., Xiong, S. et al. Causal relationship between prostate cancer and 12 types of cancers: multivariable and bidirectional Mendelian randomization analyses. Int Urol Nephrol 56, 547–556 (2024). https://doi.org/10.1007/s11255-023-03793-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03793-w

Keywords

Navigation