Skip to main content
Log in

Association between albumin-corrected anion gap level and the risk of acute kidney injury in intensive care unit

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

This study was to investigate the association between albumin-corrected anion gap (AG) (ACAG) levels and the risk of acute kidney injury (AKI) in intensive care unit (ICU) patients.

Methods

The ICU patients of this retrospective cohort study were collected from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database between 2008 and 2019. ACAG = AG + {4.4 − [albumin (g/dl)]} × 2.5. The incidence of AKI was determined using the Kidney Disease: Improving Global Outcomes (KDIGO) definition. The logistic regression model was used to evaluate the association between ACAG levels and the risk of AKI. Subgroup analyses were applied based on age, gender, mechanical ventilation, vasopressors, the Charlson comorbidity index (CCI), and the Simplified Acute Physiology Score II (SAPS II).

Results

Totally, 5586 patients were enrolled, of which 1929 patients (34.53%) occurred AKI. The higher levels of ACAG were associated with the risk of AKI in ICU patients, with the odds ratio (OR) value being 1.23 [95% confidence interval (CI): 1.22–1.24, P = 0.005] in ACAG level between 16.5 and 19.5, and OR value being 1.20 (95% CI 1.16–1.24, P = 0.016) in ACAG level > 19.5. A higher ACAG level was associated with a higher risk of AKI in ICU patients aged < 65 years, in ICU patients of female gender, in ICU patients who used mechanical ventilation, in ICU patients who did not use vasopressors, in patients without cardiogenic shock, and in ICU patients with CCI ≥ 2, and SAPS II > 31 (all P < 0.05).

Conclusion

There is an association between ACAG level and the risk of AKI in ICU patients. A higher ACAG value in ICU patients should therefore receive more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ (2021) Acute kidney injury. Nat Rev Dis Prim 7(1):52. https://doi.org/10.1038/s41572-021-00284-z

    Article  PubMed  Google Scholar 

  2. Shaikhouni S, Yessayan L (2022) Management of acute kidney injury/renal replacement therapy in the intensive care unit. Surg Clin N Am 102(1):181–198. https://doi.org/10.1016/j.suc.2021.09.013

    Article  PubMed  Google Scholar 

  3. Calderon-Margalit R, Golan E, Twig G, Leiba A, Tzur D, Afek A, Skorecki K, Vivante A (2018) History of childhood kidney disease and risk of adult end-stage renal disease. N Engl J Med 378(5):428–438. https://doi.org/10.1056/NEJMoa1700993

    Article  PubMed  Google Scholar 

  4. Shah S, Leonard AC, Harrison K, Meganathan K, Christianson AL, Thakar CV (2020) Mortality and recovery associated with kidney failure due to acute kidney injury. Clin J Am Soc Nephrol 15(7):995–1006. https://doi.org/10.2215/cjn.11200919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu H, Ren A, Zhou K, Chen Q, Zhang M, Liu J (2020) Impact of dexmedetomidine infusion on postoperative acute kidney injury in elderly patients undergoing major joint replacement: a retrospective cohort study. Drug Des Dev Ther 14:4695–4701. https://doi.org/10.2147/dddt.S278342

    Article  CAS  Google Scholar 

  6. Vormann MK, Tool LM, Ohbuchi M, Gijzen L, van Vught R, Hankemeier T, Kiyonaga F, Kawabe T, Goto T, Fujimori A, Vulto P, Lanz HL, Tetsuka K (2022) Modelling and prevention of acute kidney injury through ischemia and reperfusion in a combined human renal proximal tubule/blood vessel-on-a-chip. Kidney360 3(2):217–231. https://doi.org/10.34067/kid.0003622021

    Article  PubMed  Google Scholar 

  7. Sato Y, Takahashi M, Yanagita M (2020) Pathophysiology of AKI to CKD progression. Semin Nephrol 40(2):206–215. https://doi.org/10.1016/j.semnephrol.2020.01.011

    Article  CAS  PubMed  Google Scholar 

  8. Husain-Syed F, Reis T, Kashani K, Ronco C (2022) Advances in laboratory detection of acute kidney injury. Pract Lab Med 31:e00283. https://doi.org/10.1016/j.plabm.2022.e00283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang CY, Grandas FG, Flechet M, Meyfroidt G (2020) Clinical prediction models for acute kidney injury. Revista Brasileira de terapia intensiva 32(1):123–132. https://doi.org/10.5935/0103-507x.20200018

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schricker S, Schanz M, Alscher MD, Kimmel M (2020) Metabolic acidosis: diagnosis and treatment. Medizinische Klinik, Intensivmedizin und Notfallmedizin 115(4):275–280. https://doi.org/10.1007/s00063-019-0538-y

    Article  CAS  PubMed  Google Scholar 

  11. Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, Castellano G (2020) Inflammaging and complement system: a link between acute kidney injury and chronic graft damage. Front Immunol 11:734. https://doi.org/10.3389/fimmu.2020.00734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu J, Wang Y, Geng X, Chen R, Xu X, Zhang X, Lin J, Teng J, Ding X (2017) Metabolic acidosis as a risk factor for the development of acute kidney injury and hospital mortality. Exp Ther Med 13(5):2362–2374. https://doi.org/10.3892/etm.2017.4292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jiang L, Wang Z, Wang L, Liu Y, Chen D, Zhang D, Shi X, Xiao D (2022) Predictive value of the serum anion gap for 28-day in-hospital all-cause mortality in sepsis patients with acute kidney injury: a retrospective analysis of the MIMIC-IV database. Ann Transl Med 10(24):1373. https://doi.org/10.21037/atm-22-5916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pratumvinit B, Lam L, Kongruttanachok N, Hemthong C, Kost GJ, Kamkang P, Reesukumal K (2020) Anion gap reference intervals show instrument dependence and weak correlation with albumin levels. Clin Chim Acta 500:172–179. https://doi.org/10.1016/j.cca.2019.10.012

    Article  CAS  PubMed  Google Scholar 

  15. Figge J, Bellomo R, Egi M (2018) Quantitative relationships among plasma lactate, inorganic phosphorus, albumin, unmeasured anions and the anion gap in lactic acidosis. J Crit Care 44:101–110. https://doi.org/10.1016/j.jcrc.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  16. Hu T, Zhang Z, Jiang Y (2021) Albumin corrected anion gap for predicting in-hospital mortality among intensive care patients with sepsis: a retrospective propensity score matching analysis. Clin Chim Acta 521:272–277. https://doi.org/10.1016/j.cca.2021.07.021

    Article  CAS  PubMed  Google Scholar 

  17. Zhong L, Xie B, Ji XW, Yang XH (2022) The association between albumin corrected anion gap and ICU mortality in acute kidney injury patients requiring continuous renal replacement therapy. Intern Emerg Med 17(8):2315–2322. https://doi.org/10.1007/s11739-022-03093-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giesa N, Heeren P, Klopfenstein S, Flint A, Agha-Mir-Salim L, Poncette A, Balzer F, Boie S (2022) MIMIC-IV as a clinical data schema. Stud Health Technol Inform 294:559–560. https://doi.org/10.3233/shti220522

    Article  PubMed  Google Scholar 

  19. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  20. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang B, Li D, Cheng B, Ying B, Gong Y (2020) The neutrophil percentage-to-albumin ratio is associated with all-cause mortality in critically ill patients with acute kidney injury. Biomed Res Int 2020:5687672. https://doi.org/10.1155/2020/5687672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gigante A, Di Mario F, Basili S (2023) The importance of early detecting high-risk patients with acute kidney injury requiring continuous kidney replacement therapy. Intern Emerg Med 18(1):11–13. https://doi.org/10.1007/s11739-022-03136-0

    Article  PubMed  Google Scholar 

  23. Jung B, Martinez M, Claessens YE, Darmon M, Klouche K, Lautrette A, Levraut J, Maury E, Oberlin M, Terzi N, Viglino D, Yordanov Y, Claret PG, Bigé N (2019) Diagnosis and management of metabolic acidosis: guidelines from a French expert panel. Ann Intensive Care 9(1):92. https://doi.org/10.1186/s13613-019-0563-2

    Article  PubMed  PubMed Central  Google Scholar 

  24. Orieux A, Boyer A, Dewitte A, Combe C, Rubin S (2022) Acute kidney injury in intensive care unit: a review. Nephrologie & therapeutique 18(1):7–20. https://doi.org/10.1016/j.nephro.2021.07.324

    Article  Google Scholar 

  25. Albeladi FI (2021) Essence core: fluid management in acute kidney injury. Saudi J Kidney Dis Transplant 32(1):9–18. https://doi.org/10.4103/1319-2442.318552

    Article  Google Scholar 

  26. Thongprayoon C, Qureshi F, Petnak T, Cheungpasitporn W, Chewcharat A, Cato LD, Boonpheng B, Bathini T, Hansrivijit P, Vallabhajosyula S, Kaewput W (2020) Impact of acute kidney injury on outcomes of hospitalizations for heat stroke in the United States. Diseases (Basel, Switzerland). https://doi.org/10.3390/diseases8030028

  27. Kim HJ, Ryu H, Kang E, Kang M, Han M, Song SH, Lee J, Jung JY, Lee KB, Sung S, Seong EY, Ahn C, Oh KH (2021) Metabolic acidosis is an independent risk factor of renal progression in Korean chronic kidney disease patients: the KNOW-CKD study results. Front Med 8:707588. https://doi.org/10.3389/fmed.2021.707588

    Article  Google Scholar 

  28. Chowdhury AH, Cox EF, Francis ST, Lobo DN (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256(1):18–24. https://doi.org/10.1097/SLA.0b013e318256be72

    Article  PubMed  Google Scholar 

  29. Kraut JA, Madias NE (2018) Retarding progression of chronic kidney disease: use of modalities that counter acid retention. Curr Opin Nephrol Hypertens 27(2):94–101. https://doi.org/10.1097/mnh.0000000000000386

    Article  CAS  PubMed  Google Scholar 

  30. Magalhães PA, de Brito TS, Freire RS, da Silva MT, dos Santos AA, Vale ML, de Menezes DB, Martins AM, Libório AB (2016) Metabolic acidosis aggravates experimental acute kidney injury. Life Sci 146:58–65. https://doi.org/10.1016/j.lfs.2016.01.007

    Article  CAS  PubMed  Google Scholar 

  31. Chao CT, Wu VC, Lai CF, Shiao CC, Huang TM, Wu PC, Tsai IJ, Hou CC, Wang WJ, Tsai HB, Lin YF, Chiang WC, Lin SL, Tsai PR, Ko WJ, Wu MS, Wu KD (2012) Advanced age affects the outcome-predictive power of RIFLE classification in geriatric patients with acute kidney injury. Kidney Int 82(8):920–927. https://doi.org/10.1038/ki.2012.237

    Article  PubMed  Google Scholar 

  32. Wu L, Hu Y, Zhang X, Chen W, Yu ASL, Kellum JA, Waitman LR, Liu M (2020) Changing relative risk of clinical factors for hospital-acquired acute kidney injury across age groups: a retrospective cohort study. BMC Nephrol 21(1):321. https://doi.org/10.1186/s12882-020-01980-w

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kane-Gill SL, Sileanu FE, Murugan R, Trietley GS, Handler SM, Kellum JA (2015) Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am J Kidney Dis 65(6):860–869. https://doi.org/10.1053/j.ajkd.2014.10.018

    Article  PubMed  Google Scholar 

  34. Ricardo AC, Yang W, Sha D, Appel LJ, Chen J, Krousel-Wood M, Manoharan A, Steigerwalt S, Wright J, Rahman M, Rosas SE, Saunders M, Sharma K, Daviglus ML, Lash JP (2019) Sex-related disparities in CKD progression. J Am Soc Nephrol 30(1):137–146. https://doi.org/10.1681/asn.2018030296

    Article  CAS  PubMed  Google Scholar 

  35. Loutradis C, Pickup L, Law JP, Dasgupta I, Townend JN, Cockwell P, Sharif A, Sarafidis P, Ferro CJ (2021) Acute kidney injury is more common in men than women after accounting for socioeconomic status, ethnicity, alcohol intake and smoking history. Biol Sex Differ 12(1):30. https://doi.org/10.1186/s13293-021-00373-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. White MC, Fleeman R, Arnold AC (2019) Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ 10(1):31. https://doi.org/10.1186/s13293-019-0247-5

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sousa ALB, de Souza LM, Santana Filho OV, Rocha PN (2020) Incidence, predictors and prognosis of acute kidney injury in nonagenarians: an in-hospital cohort study. BMC Nephrol 21(1):34. https://doi.org/10.1186/s12882-020-1698-y

    Article  PubMed  PubMed Central  Google Scholar 

  38. Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, Ostermann M, Oudemans-van Straaten HM, Schetz M (2017) Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: Expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med 43(6):730–749. https://doi.org/10.1007/s00134-017-4832-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsieh HM, Shen CT, Chen LS, Chen FM, Yeh SC (2022) Moderation effect of mammography screening among women with multiple chronic conditions. Sci Rep 12(1):2303. https://doi.org/10.1038/s41598-022-06187-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fan T, Wang H, Wang J, Wang W, Guan H, Zhang C (2021) Nomogram to predict the risk of acute kidney injury in patients with diabetic ketoacidosis: an analysis of the MIMIC-III database. BMC Endocr Disord 21(1):37. https://doi.org/10.1186/s12902-021-00696-8

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang S, Li G, Zuo H, Yang H, Ma L, Feng J, Niu Y, Ma L, Liu S, Qi T, Liu X (2019) Association of insulin, C-peptide and blood lipid patterns in patients with impaired glucose regulation. BMC Endocr Disord 19(1):75. https://doi.org/10.1186/s12902-019-0400-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ronco AL, Martínez-López W, Calderón JM, Golomar W (2021) Dietary acid load and lung cancer risk: a case-control study in men. Cancer Treat Res Commun 28:100382. https://doi.org/10.1016/j.ctarc.2021.100382

    Article  PubMed  Google Scholar 

  43. Mirmiran P, Houshialsadat Z, Bahadoran Z, Khalili-Moghadam S, Shahrzad MK, Azizi F (2021) Dietary acid load and risk of cardiovascular disease: a prospective population-based study. BMC Cardiovasc Disord 21(1):432. https://doi.org/10.1186/s12872-021-02243-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research received no funding.

Author information

Authors and Affiliations

Authors

Contributions

XZ and SZ designed the study. XZ wrote the manuscript. JH, JH, ZQ, LL, CX, and ZZ collected, analyzed, and interpreted the data. SZ critically reviewed, edited, and approved the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Siquan Zhang.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethics approval and consent to participate

The data included in this study were downloaded from a public database, so the requirements to obtain institutional review board approval and written patient consent did not apply.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Han, J., Hu, J. et al. Association between albumin-corrected anion gap level and the risk of acute kidney injury in intensive care unit. Int Urol Nephrol 56, 1117–1127 (2024). https://doi.org/10.1007/s11255-023-03755-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03755-2

Keywords

Navigation