Skip to main content

Advertisement

Log in

Prognostic significance of circulating microparticles in IgA nephropathy

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Endothelial injury, involved in the pathogenesis of renal fibrosis, can generate microparticles (MPs). These are 0.1–1 µm membrane-bound vesicles shed from the damaged or activated cell surfaces. We analyzed the presence of circulating MPs and EnMPs in IgAN and correlated with markers of endothelial injury and disease activity.

Methods

The study included 30 IgAN (mean age 31.5 ± 9 years), 25 healthy controls and Lupus nephritis (n = 10) as disease controls. Circulating MPs were quantitated by Flow cytometry and EnMPs were analyzed using anti-CD31-FITC and anti-CD146-PE antibodies. Their levels were correlated with serum von Willebrand Factor, histological Oxford MEST-C score and renal outcome. A prospective validation group of 20 patients of biopsy-proven IgA nephropathy was also included.

Results

IgAN had significantly higher levels of MPs, EnMPs and vWF compared to controls. On multivariate analysis, plasma levels of total MPs, EnMPs and serum vWF correlated significantly with the presence of hypertension and E1 on histology. E1 and high MPs (> 130 counts/µl) were associated with shorter time to doubling of serum creatinine. MPs cutoff level of 130 counts/µl had a sensitivity of 75%, specificity of 93.3% and diagnostic accuracy of 89.5% for E1 in the validation cohort.

Conclusion

Circulating MPs and EnMPs in IgAN correlate with E1 on histology and have a potential as non-invasive biomarkers to predict disease activity and renal outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

IgAN:

IgA nephropathy

LN:

Lupus nephritis

MPs:

Microparticles

EnMPs:

Endothelial microparticles

PMPs:

Platelet microparticles

vWF:

Von Willebrand factor

FITC:

Fluorescein isothiocyanate

PE:

Phycoerythrin

CKD:

Chronic kidney disease

eGFR:

Estimated glomerular filtration rate

References

  1. Penfold RS, Prendecki M, McAdoo S, Tam FW (2018) Primary IgA nephropathy: current challenges and future prospects. Int J Nephrol Renov Dis 11:137–148

    Article  CAS  Google Scholar 

  2. Roberts IS, Cook HT, Troyanov S et al (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76(5):546–556

    Article  PubMed  Google Scholar 

  3. Hernández E, Toledo T, Alamo C, Mon C, Rodicio JL, Praga M (1997) Elevation of von Willebrand factor levels in patients with IgA nephropathy: effect of ACE inhibition. Am J Kidney Dis 30(3):397–403

    Article  PubMed  Google Scholar 

  4. Shahidi M (2017) Thrombosis and von Willebrand factor. Adv Exp Med Biol 906:285–306

    Article  CAS  PubMed  Google Scholar 

  5. Zhai YL, Zhu L, Shi SF, Liu LJ, Lv JC, Zhang H (2014) Elevated soluble VEGF receptor sFlt-1 correlates with endothelial injury in IgA nephropathy. PLoS One 9(7):e101779

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Lu GY, Shen L, Wang ZY et al (2008) Significance of plasma von Willebrand factor level and von Willebrand factor-cleaving protease activity in patients with chronic renal diseases. Chin Med J (Engl) 121(2):133–136

    Article  PubMed  Google Scholar 

  7. Mörtberg J, Lundwall K, Mobarrez F, Wallén H, Jacobson SH, Spaak J (2019) Increased concentrations of platelet- and endothelial-derived microparticles in patients with myocardial infarction and reduced renal function- a descriptive study. BMC Nephrol 20(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burger D, Schock S, Thompson CS, Montezano AC, Hakim AM, Touyz RM (2013) Microparticles: biomarkers and beyond. Clin Sci (Lond) 124(7):423–441

    Article  CAS  PubMed  Google Scholar 

  9. Erdbrügger U, Le TH (2016) Extracellular vesicles in renal diseases: more than novel biomarkers? J Am Soc Nephrol 27(1):12–26

    Article  PubMed  Google Scholar 

  10. Jourde-Chiche N, Fakhouri F, Dou L et al (2019) Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 15(2):87–108

    Article  PubMed  Google Scholar 

  11. Microparticle NS, Diseases A (2016) Microparticle and Atherothrombotic diseases. J AtherosclerThromb 23(1):1–9

    Google Scholar 

  12. Boulanger CM, Loyer X, Rautou PE, Amabile N (2017) Extracellular vesicles in coronary artery disease. Nat Rev Cardiol 14(5):259–272

    Article  CAS  PubMed  Google Scholar 

  13. Faure V, Dou L, Sabatier F et al (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J ThrombHaemost 4(3):566–573

    Article  CAS  Google Scholar 

  14. Soriano S, Carmona A, Triviño F et al (2014) Endothelial damage and vascular calcification in patients with chronic kidney disease. Am J Physiol Renal Physiol 307(11):F1302–F1311

    Article  CAS  PubMed  Google Scholar 

  15. Ståhl AL, Johansson K, Mossberg M, Kahn R, Karpman D (2019) Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr Nephrol 34(1):11–30

    Article  PubMed  Google Scholar 

  16. Trimarchi H, Barratt J, Cattran DC, Cook HT, Coppo R, Haas M et al (2017) Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int 91(5):1014–1021

    Article  PubMed  Google Scholar 

  17. Welsh JA, Van Der Pol E, Arkesteijn GJA et al (2020) MIFlowCyt-EV: a framework for standardized reporting of extracellular vesicle flow cytometry experiments. J Extracell Vesicles 9(1):1713526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Makita Y, Suzuki H, Nakano D, Yanagawa H, Kano T, Novak J, Nishiyama A, Suzuki Y (2022) Glomerular deposition of galactose-deficient IgA1-containing immune complexes via glomerular endothelial cell injuries. Nephrol Dial Transplant 37(9):1629–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chakera A, MacEwen C, Bellur SS, Chompuk LO, Lunn D, Roberts ISD (2016) Prognostic value of endocapillary hypercellularity in IgA nephropathy patients with no immunosuppression. J Nephrol 29(3):367–375

    Article  CAS  PubMed  Google Scholar 

  20. Kawecki C, Lenting PJ, Denis CV (2017) von Willebrand factor and inflammation. J ThrombHaemost 15(7):1285–1294

    Article  CAS  Google Scholar 

  21. Zhang JJ, Jiang L, Liu G et al (2008) Elevation of serum von Willebrand factor and anti-endothelial cell antibodies in patients with immunoglobulin A nephropathy are associated with intrarenal arterial lesions. Nephrology (Carlton) 13(8):712–720

    Article  CAS  PubMed  Google Scholar 

  22. Mannucci PM (1998) von Willebrand factor: a marker of endothelial damage? ArteriosclerThrombVasc Biol 18(9):1359–1362

    Article  CAS  Google Scholar 

  23. Flamant S, Tamarat R (2016) Extracellular vesicles and vascular injury: new insights for radiation exposure. Radiat Res 186(2):203–218

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang Y, Ma KL, Gong YX et al (2018) Platelet microparticles mediate glomerular endothelial injury in early diabetic nephropathy. J Am Soc Nephrol 29(11):2671–2695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. UstaAtmaca H, Akbas F, Aral H (2019) Relationship between circulating microparticles and hypertension and other cardiac disease biomarkers in the elderly. BMC Cardiovasc Disord 19(1):164

    Article  Google Scholar 

  26. Helbing T, Olivier C, Bode C, Moser M, Diehl P (2014) Role of microparticles in endothelial dysfunction and arterial hypertension. World J Cardiol 6(11):1135–1139

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hamilton KK, Hattori R, Esmon CT, Sims PJ (1990) Complement proteins C5b–9 induce vesiculation of the endothelial plasma membrane and expose catalytic surface for assembly of the prothrombinase enzyme complex. J Biol Chem 265(7):3809–3814

    Article  CAS  PubMed  Google Scholar 

  28. Dursun I, Yel S, Unsur E (2015) Dynamics of circulating microparticles in chronic kidney disease and transplantation: is it really reliable marker? World J Transplant 5(4):267–275

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bardin N, George F, Mutin M et al (1996) S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen. Tissue Antigens 48(5):531–539

    Article  CAS  PubMed  Google Scholar 

  30. Chironi GN, Boulanger CM, Simon A, Dignat-George F, Freyssinet JM, Tedgui A (2009) Endothelial microparticles in diseases. Cell Tissue Res 335(1):143–151

    Article  PubMed  Google Scholar 

  31. Ridger VC, Boulanger CM, Angelillo-Scherrer A et al (2017) Microvesicles in vascular homeostasis and diseases. Position paper of the European society of cardiology (ESC) working group on atherosclerosis and vascular biology. Thromb Haemost 117(7):1296–1316

    Article  PubMed  Google Scholar 

  32. Neuber C, Pufe J, Pietzsch J (2015) Influence of irradiation on release of endothelial microparticles (EMP) in vitro. Clin HemorheolMicrocirc 61(2):291–299

    CAS  Google Scholar 

  33. Ihm CG (2015) Hypertension in chronic glomerulonephritis. Electrolyte Blood Press 13(2):41–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li PK, Ho KK, Szeto CC, Yu L, Lai FM (2002) Prognostic indicators of IgA nephropathy in the Chinese–clinical and pathological perspectives. Nephrol Dial Transplant 17(1):64–69

    Article  CAS  PubMed  Google Scholar 

  35. Preston RA, Jy W, Jimenez JJ et al (2003) Effects of severe hypertension on endothelial and platelet microparticles. Hypertension 41(2):211–221

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is thankful to DST-SERB (CRG/2018/003042) for financial support.

Funding

DST-SERB, CRG/2018/003042, Vinita Agrawal.

Author information

Authors and Affiliations

Authors

Contributions

NB, VA, RP, VA, and NP participated in study conception and design. NB, and VA, were involved in data acquisition, interpretation and writing the manuscript. MKR helped in flow cytometry experiments. SS helped to collect and evaluate samples for the validation cohort. RP and VA performed critical revision of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Vinita Agrawal.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

The study was approved by the Institutional Ethical Review Committee of Sanjay Gandhi Postgraduate Institute of Medical Sciences in Lucknow, India (IEC code: 2017-129-PhD-99).

Consent to participate

Informed consent was obtained from all participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, N., Rai, M.K., Singh, S. et al. Prognostic significance of circulating microparticles in IgA nephropathy. Int Urol Nephrol 56, 1071–1081 (2024). https://doi.org/10.1007/s11255-023-03743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03743-6

Keywords

Navigation