Skip to main content
Log in

Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin–angiotensin–aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Helou N et al (2016) Multidisciplinary management of diabetic kidney disease: a systematic review and meta-analysis. JBI Database System Rev Implement Rep 14(7):169–207

    Article  PubMed  Google Scholar 

  2. Koye DN, Shaw JE, Reid CM, Atkins RC, Reutens AT, Magliano DJ (2017) Incidence of chronic kidney disease among people with diabetes: a systematic review of observational studies. Diabet Med 34(7):887–901

    Article  CAS  PubMed  Google Scholar 

  3. Ogurtsova K, da Rocha Fernandes JD, Huang Y et al (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50

    Article  CAS  PubMed  Google Scholar 

  4. Selby NM, Taal MW (2020) An updated overview of diabetic nephropathy: diagnosis, prognosis, treatment goals and latest guidelines. Diabetes Obes Metab 22(Suppl 1):3–15

    Article  PubMed  Google Scholar 

  5. Piao Y, Yin D (2018) Mechanism underlying treatment of diabetic kidney disease using traditional Chinese medicine based on theory of Yin and Yang balance. J Tradit Chin Med 38(5):797–802

    Article  PubMed  Google Scholar 

  6. Lin YC, Chang YH, Yang SY, Wu KD, Chu TS (2018) Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc 117(8):662–675

    Article  CAS  PubMed  Google Scholar 

  7. Lewis EJ (2002) The role of angiotensin II receptor blockers in preventing the progression of renal disease in patients with type 2 diabetes. Am J Hypertens 15(10 Pt 2):123S-128S

    Article  CAS  PubMed  Google Scholar 

  8. Rayner B (2004) Advances in the treatment of diabetic renal disease: focus on losartan. Curr Med Res Opin 20(3):333–340

    Article  CAS  PubMed  Google Scholar 

  9. Mauer M et al (2009) Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med 361(1):40–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van der Sande NG et al (2016) Individualized prediction of the effect of angiotensin receptor blockade on renal and cardiovascular outcomes in patients with diabetic nephropathy. Diabetes Obes Metab 18(11):1120–1127

    Article  PubMed  Google Scholar 

  11. Ma J et al (2013) Effects of zishentongluo in patients with early-stage diabetic nephropathy. Am J Chin Med 41(2):333–340

    Article  PubMed  Google Scholar 

  12. Shi R et al (2019) Efficacy of co-administration of Liuwei Dihuang Pills and Ginkgo biloba tablets on albuminuria in type 2 diabetes: a 24-month, multicenter, double-blind, placebo-controlled, Randomized clinical trial. Front Endocrinol (Lausanne) 10:100

    Article  PubMed  Google Scholar 

  13. Yang X et al (2016) Effects of Tangshen formula on urinary and plasma liver-type fatty acid binding protein levels in patients with type 2 diabetic kidney disease: post-hoc findings from a multi-center, randomized, double-blind, placebo-controlled trial investigating the efficacy and safety of Tangshen formula in patients with type 2 diabetic kidney disease. BMC Complement Altern Med 16:246

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coimbra TM, Janssen U, Gröne HJ et al (2000) Early events leading to renal injury in obese Zucker (fatty) rats with type II diabetes. Kidney Int 57(1):167–182

    Article  CAS  PubMed  Google Scholar 

  15. Hassan Yankuzo QUA, Rahajoe Imam Santosa SFUA, Talib NA(2011)Beneficial effect of the leaves of Murraya koenigii (Linn.) Spreng (Rutaceae) on diabetes-induced renal damage in vivo. J Ethnopharmacol 135(1):88–94

  16. Meza Letelier CE et al (2017) Pathophysiology of diabetic nephropathy: a literature review. Medwave 17(1):e6839

    Article  PubMed  Google Scholar 

  17. Izquierdo-Lahuerta A, Martínez-García C, Medina-Gómez G (2016) Lipotoxicity as a trigger factor of renal disease. J Nephrol 29(5):603–610

    Article  CAS  PubMed  Google Scholar 

  18. Soetikno V et al (2013) Curcumin decreases renal triglyceride accumulation through AMPK-SREBP signaling pathway in streptozotocin-induced type 1 diabetic rats. J Nutr Biochem 24(5):796–802

    Article  CAS  PubMed  Google Scholar 

  19. Tsun JG, Yung S, Chau MK, Shiu SW, Chan TM, Tan KC (2014) Cellular cholesterol transport proteins in diabetic nephropathy. PLoS One 9(9):e105787

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dan Tang WH, Zhi-Tong Zhang JS, Xue Wang WG (2022) Protective effects of Huang-Lian-Jie-Du Decoction on diabetic nephropathy through regulating AGEs/RAGE/Akt/Nrf2 pathway and metabolic profiling in db/db mice. Phytomedicine 95:153777

    Article  PubMed  Google Scholar 

  22. Rojas A, Delgado-López F, González I, Pérez-Castro R, Romero J, Rojas I (2013) The receptor for advanced glycation end-products: a complex signaling scenario for a promiscuous receptor. Cell Signal 25(3):609–614

    Article  CAS  PubMed  Google Scholar 

  23. Ni WJ, Tang LQ, Zhou H, Ding HH, Qiu YY (2016) Renoprotective effect of berberine via regulating the PGE2 -EP1-Gαq-Ca(2+) signalling pathway in glomerular mesangial cells of diabetic rats. J Cell Mol Med 20(8):1491–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu YY, Tang LQ, Wei W (2017) Berberine exerts renoprotective effects by regulating the AGEs-RAGE signaling pathway in mesangial cells during diabetic nephropathy. Mol Cell Endocrinol 443:89–105

    Article  CAS  PubMed  Google Scholar 

  25. Tang LQ, Liu S, Zhang ST, Zhu LN, Wang FL (2014) Berberine regulates the expression of E-prostanoid receptors in diabetic rats with nephropathy. Mol Biol Rep 41(5):3339–3347

    Article  CAS  PubMed  Google Scholar 

  26. Guo Y, Ran Z, Zhang Y et al (2020) Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells. Biomed Pharmacother 131:110684

    Article  CAS  PubMed  Google Scholar 

  27. Liu M, Pan Q, Chen Y et al (2015) Administration of Danhong Injection to diabetic db/db mice inhibits the development of diabetic retinopathy and nephropathy. Sci Rep 5:11219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma T, Zheng Z, Guo H et al (2019) 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress. Toxicol Appl Pharmacol 370:93–105

    Article  CAS  PubMed  Google Scholar 

  29. Rong Q, Han B, Li Y, Yin H, Li J, Hou Y (2021) Berberine reduces lipid accumulation by promoting fatty acid oxidation in renal tubular epithelial cells of the diabetic kidney. Front Pharmacol 12:729384

    Article  CAS  PubMed  Google Scholar 

  30. Viollet B, Lantier L, Devin-Leclerc J et al (2009) Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci (Landmark Ed) 14(9):3380–3400

    Article  CAS  PubMed  Google Scholar 

  31. Yang S, Liu M, Chen Y et al (2018) NaoXinTong capsules inhibit the development of diabetic nephropathy in db/db mice. Sci Rep 8(1):9158

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dugan LL, You YH, Ali SS et al (2013) AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 123(11):4888–4899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szrejder M, Piwkowska A (2019) AMPK signalling: implications for podocyte biology in diabetic nephropathy. Biol Cell 111(5):109–120

    Article  PubMed  Google Scholar 

  34. Gao J, Liu P, Shen Z et al (2021) Morroniside promotes PGC-1α-mediated cholesterol efflux in sodium palmitate or high glucose-induced mouse renal tubular epithelial cells. Biomed Res Int 2021:9942152

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cheng D, Gao L, Su S et al (2019) Moringa isothiocyanate activates Nrf2: potential role in diabetic nephropathy. AAPS J 21(2):31

    Article  PubMed  Google Scholar 

  36. Zhang B, Zhang X, Zhang C, Shen Q, Sun G, Sun X (2019) Notoginsenoside R1 Protects db/db mice against diabetic nephropathy via upregulation of Nrf2-mediated HO-1 expression. Molecules 24(2):247

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zou T, Zhu M, Ma YC et al (2018) MicroRNA-410-5p exacerbates high-fat diet-induced cardiac remodeling in mice in an endocrine fashion. Sci Rep 8(1):8780

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang K, Zheng X, Pan Z et al (2020) Icariin prevents extracellular matrix accumulation and ameliorates experimental diabetic kidney disease by inhibiting oxidative stress via GPER mediated p62-dependent Keap1 degradation and Nrf2 activation. Front Cell Dev Biol 8:559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gorin Y, Block K (2013) Nox4 and diabetic nephropathy: with a friend like this, who needs enemies. Free Radic Biol Med 61:130–142

    Article  CAS  PubMed  Google Scholar 

  40. Jha JC, Gray SP, Barit D et al (2014) Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol 25(6):1237–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahimainathan L, Das F, Venkatesan B, Choudhury GG (2006) Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55(7):2115–2125

    Article  CAS  PubMed  Google Scholar 

  42. Yong R, Chen XM, Shen S et al (2013) Plumbagin ameliorates diabetic nephropathy via interruption of pathways that include NOX4 signalling. PLoS One 8(8):e73428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hong JN, Li WW, Wang LL et al (2017) Jiangtang decoction ameliorate diabetic nephropathy through the regulation of PI3K/Akt-mediated NF-κB pathways in KK-Ay mice. Chin Med 12:13

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao T, Sun S, Zhang H et al (2016) Therapeutic effects of Tangshen formula on diabetic nephropathy in rats. PLoS One 11(1):e0147693

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen J, Yang Y, Lv Z et al (2020) Study on the inhibitive effect of Catalpol on diabetic nephropathy. Life Sci 257:118120

    Article  CAS  PubMed  Google Scholar 

  46. Chen J, Hou XF, Wang G et al (2016) Terpene glycoside component from Moutan cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses. J Ethnopharmacol 193:433–444

    Article  CAS  PubMed  Google Scholar 

  47. Zhong Y, Lee K, Deng Y et al (2019) Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun 10(1):4523

    Article  PubMed  PubMed Central  Google Scholar 

  48. Han W, Ma Q, Liu Y et al (2019) Huangkui capsule alleviates renal tubular epithelial-mesenchymal transition in diabetic nephropathy via inhibiting NLRP3 inflammasome activation and TLR4/NF-κB signaling. Phytomedicine 57:203–214

    Article  PubMed  Google Scholar 

  49. Hao CM, Breyer MD (2008) Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol 70:357–377

    Article  CAS  PubMed  Google Scholar 

  50. Zhang T, Zhu Q, Shao Y, Wang K, Wu Y (2017) Paeoniflorin prevents TLR2/4-mediated inflammation in type 2 diabetic nephropathy. Biosci Trends 11(3):308–318

    Article  CAS  PubMed  Google Scholar 

  51. Zhu L, Han J, Yuan R, Xue L, Pang W (2018) Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res 51(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shao YX, Xu XX, Wang K, Qi XM, Wu YG (2017) Paeoniflorin attenuates incipient diabetic nephropathy in streptozotocin-induced mice by the suppression of the Toll-like receptor-2 signaling pathway. Drug Des Devel Ther 11:3221–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Qi MY, He YH, Cheng Y et al (2021) Icariin ameliorates streptozocin-induced diabetic nephropathy through suppressing the TLR4/NF-κB signal pathway. Food Funct 12(3):1241–1251

    Article  CAS  PubMed  Google Scholar 

  54. Ma L, Wu F, Shao Q, Chen G, Xu L, Lu F (2021) Baicalin alleviates oxidative stress and inflammation in diabetic nephropathy via Nrf2 and MAPK signaling pathway. Drug Des Devel Ther 15:3207–3221

    Article  PubMed  PubMed Central  Google Scholar 

  55. Qiu YY, Tang LQ (2016) Roles of the NLRP3 inflammasome in the pathogenesis of diabetic nephropathy. Pharmacol Res 114:251–264

    Article  CAS  PubMed  Google Scholar 

  56. Shahzad K, Bock F, Dong W et al (2015) Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 87(1):74–84

    Article  CAS  PubMed  Google Scholar 

  57. Feng H et al (2021) Astragaloside IV ameliorates diabetic nephropathy in db/db mice by inhibiting NLRP3 inflammasome-mediated inflammation. Int J Mol Med. https://doi.org/10.3892/ijmm.2021.4996

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lu M, Yin N, Liu W, Cui X, Chen S, Wang E (2017) Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling. Biomed Res Int 2017:1516985

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wang S, Zhao X, Yang S, Chen B, Shi J (2017) Salidroside alleviates high glucose-induced oxidative stress and extracellular matrix accumulation in rat glomerular mesangial cells by the TXNIP-NLRP3 inflammasome pathway. Chem Biol Interact 278:48–53

    Article  CAS  PubMed  Google Scholar 

  60. Wu D et al (2016) A novel mechanism of action for salidroside to alleviate diabetic albuminuria: effects on albumin transcytosis across glomerular endothelial cells. Am J Physiol Endocrinol Metab 310(3):E225-237

    Article  PubMed  Google Scholar 

  61. Ribback S et al (2015) PI3K/AKT/mTOR pathway plays a major pathogenetic role in glycogen accumulation and tumor development in renal distal tubules of rats and men. Oncotarget 6(15):13036–13048

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin W, Liu G, Kang X et al (2021) Ellagic acid inhibits high glucose-induced injury in rat mesangial cells via the PI3K/Akt/FOXO3a signaling pathway. Exp Ther Med 22(3):1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jing D, Bai H, Yin S (2017) Renoprotective effects of emodin against diabetic nephropathy in rat models are mediated via PI3K/Akt/GSK-3β and Bax/caspase-3 signaling pathways. Exp Ther Med 14(5):5163–5169

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun SF, Zhao TT, Zhang HJ et al (2015) Renoprotective effect of berberine on type 2 diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 42(6):662–670

    Article  CAS  PubMed  Google Scholar 

  65. Zhang NN, Kang JS, Liu SS et al (2020) Flavanomarein inhibits high glucose-stimulated epithelial-mesenchymal transition in HK-2 cells via targeting spleen tyrosine kinase. Sci Rep 10(1):439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang X, He H, Liang D et al (2016) Protective effects of berberine on renal injury in streptozotocin (STZ)-induced diabetic mice. Int J Mol Sci 17(8):1327

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen YCL, Yang T (2021) Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway. Life Sci 271:119197

    Article  CAS  PubMed  Google Scholar 

  68. Xu XX, Zhang W, Zhang P, Qi XM, Wu YG, Shen JJ (2013) Superior renoprotective effects of the combination of breviscapine with enalapril and its mechanism in diabetic rats. Phytomedicine 20(10):820–827

    Article  CAS  PubMed  Google Scholar 

  69. Muskiet MH, Smits MM, Morsink LM, Diamant M (2014) The gut-renal axis: do incretin-based agents confer renoprotection in diabetes. Nat Rev Nephrol 10(2):88–103

    Article  CAS  PubMed  Google Scholar 

  70. Ni WJ, Ding HH, Zhou H, Qiu YY, Tang LQ (2015) Renoprotective effects of berberine through regulation of the MMPs/TIMPs system in streptozocin-induced diabetic nephropathy in rats. Eur J Pharmacol 764:448–456

    Article  CAS  PubMed  Google Scholar 

  71. Tu Q, Li Y, Jin J, Jiang X, Ren Y, He Q (2019) Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharm Biol 57(1):778–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Liu W, Liang L, Zhang Q et al (2021) Effects of andrographolide on renal tubulointersticial injury and fibrosis. Evidence of its mechanism of action. Phytomedicine 91:153650

    Article  CAS  PubMed  Google Scholar 

  73. Chen Y, Chen J, Jiang M et al (2020) Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling. Life Sci 252:117653

    Article  CAS  PubMed  Google Scholar 

  74. Lei X, Zhang BD, Ren JG, Luo FL (2018) Astragaloside suppresses apoptosis of the podocytes in rats with diabetic nephropathy via miR-378/TRAF5 signaling pathway. Life Sci 206:77–83

    Article  CAS  PubMed  Google Scholar 

  75. Lei X, Zhang L, Li Z, Ren J (2018) Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des Devel Ther 12:2785–2793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tian N, Gao Y, Wang X et al (2018) Emodin mitigates podocytes apoptosis induced by endoplasmic reticulum stress through the inhibition of the PERK pathway in diabetic nephropathy. Drug Des Devel Ther 12:2195–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xing L, Fang J, Zhu B et al (2021) Astragaloside IV protects against podocyte apoptosis by inhibiting oxidative stress via activating PPARγ-Klotho-FoxO1 axis in diabetic nephropathy. Life Sci 269:119068

    Article  CAS  PubMed  Google Scholar 

  78. Yang S, Deng H, Zhang Q et al (2016) Amelioration of diabetic mouse nephropathy by catalpol correlates with down-regulation of Grb10 expression and activation of insulin-like growth factor 1/insulin-like growth factor 1 receptor signaling. PLoS One 11(3):e0151857

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yu J, Zong GN, Wu H, Zhang KQ (2019) Podoplanin mediates the renoprotective effect of berberine on diabetic kidney disease in mice. Acta Pharmacol Sin 40(12):1544–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zang Y, Liu S, Cao A et al (2021) Astragaloside IV inhibits palmitic acid-induced apoptosis through regulation of calcium homeostasis in mice podocytes. Mol Biol Rep 48(2):1453–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen Y, Liu Q, Shan Z et al (2019) Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy. Front Pharmacol 10:1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Su J, Gao C, Xie L et al (2021) Astragaloside II ameliorated podocyte injury and mitochondrial dysfunction in streptozotocin-induced diabetic rats. Front Pharmacol 12:638422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu F, Li S, Zhang N et al (2018) Hispidulin alleviates high-glucose-induced podocyte injury by regulating protective autophagy. Biomed Pharmacother 104:307–314

    Article  CAS  PubMed  Google Scholar 

  84. Guo H, Wang Y, Zhang X et al (2017) Astragaloside IV protects against podocyte injury via SERCA2-dependent ER stress reduction and AMPKα-regulated autophagy induction in streptozotocin-induced diabetic nephropathy. Sci Rep 7(1):6852

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang X, Gao Y, Tian N et al (2019) Astragaloside IV inhibits glucose-induced epithelial-mesenchymal transition of podocytes through autophagy enhancement via the SIRT-NF-κB p65 axis. Sci Rep 9(1):323

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li X, Zhu Q, Zheng R et al (2020) Puerarin attenuates diabetic nephropathy by promoting autophagy in podocytes. Front Physiol 11:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Qin X, Jiang M, Zhao Y et al (2020) Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis. Br J Pharmacol 177(16):3646–3661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu J, Liu L, Gan L et al (2021) Berberine acts on C/EBPβ/lncRNA Gas5/miR-18a-5p loop to decrease the mitochondrial ROS generation in HK-2 cells. Front Endocrinol (Lausanne) 12:675834

    Article  PubMed  Google Scholar 

  89. Qin X, Zhao Y, Gong J et al (2019) Berberine protects glomerular podocytes via inhibiting Drp1-mediated mitochondrial fission and dysfunction. Theranostics 9(6):1698–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xue H, Li P, Luo Y et al (2019) Salidroside stimulates the Sirt1/PGC-1α axis and ameliorates diabetic nephropathy in mice. Phytomedicine 54:240–247

    Article  CAS  PubMed  Google Scholar 

  91. Zhang T, Chi Y, Kang Y et al (2019) Resveratrol ameliorates podocyte damage in diabetic mice via SIRT1/PGC-1α mediated attenuation of mitochondrial oxidative stress. J Cell Physiol 234(4):5033–5043

    Article  CAS  PubMed  Google Scholar 

  92. Jia Z, Wang K, Zhang Y et al (2021) Icariin ameliorates diabetic renal tubulointerstitial fibrosis by restoring autophagy via regulation of the miR-192-5p/GLP-1R pathway. Front Pharmacol 12:720387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zang L et al (2022) Icariin inhibits epithelial mesenchymal transition of renal tubular epithelial cells via regulating the miR-122-5p/FOXP2 axis in diabetic nephropathy rats. J Pharmacol Sci 148(2):204–213

    Article  CAS  PubMed  Google Scholar 

  94. Ding X, Zhao H, Qiao C (2022) Icariin protects podocytes from NLRP3 activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis in diabetic nephropathy. Phytomedicine 99:154005

    Article  CAS  PubMed  Google Scholar 

  95. Qiao C, Ye W, Li S, Wang H, Ding X (2018) Icariin modulates mitochondrial function and apoptosis in high glucose-induced glomerular podocytes through G protein-coupled estrogen receptors. Mol Cell Endocrinol 473:146–155

    Article  CAS  PubMed  Google Scholar 

  96. AlTamimi JZ, AlFaris NA, Al-Farga AM, Alshammari GM, BinMowyna MN, Yahya MA (2021) Curcumin reverses diabetic nephropathy in streptozotocin-induced diabetes in rats by inhibition of PKCβ/p66Shc axis and activation of FOXO-3a. J Nutr Biochem 87:108515

    Article  CAS  PubMed  Google Scholar 

  97. Ghasemi H, Einollahi B, Kheiripour N, Hosseini-Zijoud SR, Farhadian NM (2019) Protective effects of curcumin on diabetic nephropathy via attenuation of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression and alleviation of oxidative stress in rats with type 1 diabetes. Iran J Basic Med Sci 22(4):376–383

    PubMed  PubMed Central  Google Scholar 

  98. Lu Z, Zhong Y, Liu W, Xiang L, Deng Y (2019) The efficacy and mechanism of chinese herbal medicine on diabetic kidney disease. J Diabetes Res 2019:2697672

    Article  PubMed  PubMed Central  Google Scholar 

  99. Memarzia A, Khazdair MR, Behrouz S et al (2021) Experimental and clinical reports on anti-inflammatory, antioxidant, and immunomodulatory effects of Curcuma longa and curcumin, an updated and comprehensive review. BioFactors 47(3):311–350

    Article  CAS  PubMed  Google Scholar 

  100. Jie Z, Chao M, Jun A, Wei S, LiFeng M (2021) Effect of curcumin on diabetic kidney disease: a systematic review and meta-analysis of randomized, double-blind, placebo-controlled clinical trials. Evid Based Complement Alternat Med 2021:6109406

    PubMed  PubMed Central  Google Scholar 

  101. Jiménez-Osorio AS, García-Niño WR, González-Reyes S et al (2016) The Effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: a pilot study. J Ren Nutr 26(4):237–244

    Article  PubMed  Google Scholar 

  102. de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM (2015) The effects of baicalein and baicalin on mitochondrial function and dynamics: a review. Pharmacol Res 100:296–308

    Article  PubMed  Google Scholar 

  103. Yingrui W, Zheng L, Guoyan L, Hongjie W (2022) Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications. Biomed Pharmacother 148:112690

    Article  PubMed  Google Scholar 

  104. Yang M, Kan L, Wu L, Zhu Y, Wang Q (2019) Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism. Exp Ther Med 17(3):2071–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Derosa G, Maffioli P, Sahebkar A (2016) Ellagic acid and its role in chronic diseases. Adv Exp Med Biol 928:473–479

    Article  CAS  PubMed  Google Scholar 

  106. Ghadimi M, Foroughi F, Hashemipour S et al (2021) Randomized double-blind clinical trial examining the Ellagic acid effects on glycemic status, insulin resistance, antioxidant, and inflammatory factors in patients with type 2 diabetes. Phytother Res 35(2):1023–1032

    Article  CAS  PubMed  Google Scholar 

  107. Cicero AF, Baggioni A (2016) Berberine and its role in chronic disease. Adv Exp Med Biol 928:27–45

    Article  CAS  PubMed  Google Scholar 

  108. Yao JM SXL, Wang HJ ZJY, Shang HX LL et al (2015) Efficacy and safety of berberine in treatment of diabetic nephropathy: a meta analysis. Chin J Clin 9(23):4396–4402

  109. Ni WJ, Ding HH, Tang LQ (2015) Berberine as a promising anti-diabetic nephropathy drug: an analysis of its effects and mechanisms. Eur J Pharmacol 760:103–112

    Article  CAS  PubMed  Google Scholar 

  110. Gambini J, Inglés M, Olaso G et al (2015) Properties of resveratrol: in vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid Med Cell Longev. https://doi.org/10.1155/2015/837042

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sattarinezhad A, Roozbeh J, Shirazi Yeganeh B, Omrani GR, Shams M (2019) Resveratrol reduces albuminuria in diabetic nephropathy: a randomized double-blind placebo-controlled clinical trial. Diabetes Metab 45(1):53–59

    Article  CAS  PubMed  Google Scholar 

  112. Panossian A, Wikman G, Sarris J (2010) Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 17(7):481–493

    Article  CAS  PubMed  Google Scholar 

  113. Ganzera M, Yayla Y, Khan IA (2001) Analysis of the marker compounds of Rhodiola rosea L. (golden root) by reversed phase high performance liquid chromatography. Chem Pharm Bull (Tokyo) 49(4):465–467

    Article  CAS  PubMed  Google Scholar 

  114. Yuan LXL (2018) Evaluation on the effect of rhodiola sachalinensis on the improvement of early diabetic nephropathy. Chin Commun Doct 34(5):103–105

  115. Fallahzadeh MK, Dormanesh B, Sagheb MM et al (2012) Effect of addition of silymarin to renin-angiotensin system inhibitors on proteinuria in type 2 diabetic patients with overt nephropathy: a randomized, double-blind, placebo-controlled trial. Am J Kidney Dis 60(6):896–903

    Article  CAS  PubMed  Google Scholar 

  116. Voroneanu L, Siriopol D, Dumea R et al (2017) Addition of silymarin to renin-angiotensin system blockers in normotensive patients with type 2 diabetes mellitus and proteinuria: a prospective randomized trial. Int Urol Nephrol 49(12):2195–2204

    Article  CAS  PubMed  Google Scholar 

  117. Zhou YX, Zhang H, Peng C (2014) Puerarin: a review of pharmacological effects. Phytother Res 28(7):961–975

    Article  CAS  PubMed  Google Scholar 

  118. Bin Wang SC, Xiufeng Yan ML, Daqi Li PL, Ti G (2015) The therapeutic effect and possible harm of puerarin for treatment of stage III diabetic nephropathy: a meta-analysis. Altern Ther Health Med 21(1):36–44

    PubMed  Google Scholar 

  119. Liu X, Yao L, Sun D et al (2016) Effect of breviscapine injection on clinical parameters in diabetic nephropathy: a meta-analysis of randomized controlled trials. Exp Ther Med 12(3):1383–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Dong X, Fu J, Yin X et al (2016) Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res 30(8):1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhu LB (2009) Effect of fluvastatin and emodin on TGF-b1 level in patients. Heilongjiang J Tradit Chin Med 38:52–53

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (82170865), Taishan Scholars Project of Shandong Province (tsqn202211365), Weifang Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Renal Failure and TCM Science and Technology Development Plan of Shandong Province (M-2022265 to Zhentao Guo).

Author information

Authors and Affiliations

Authors

Contributions

XXC and XL were responsible for conceptualization, methodology, data curation, and writing-original draft preparation; ZTG and XDS were responsible for supervision, writing-reviewing and editing; others were responsible for data curation and investigation.

Corresponding authors

Correspondence to Xiaodong Sun or Zhentao Guo.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, X., Cao, B. et al. Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease. Int Urol Nephrol 56, 571–582 (2024). https://doi.org/10.1007/s11255-023-03703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03703-0

Keywords

Navigation