Skip to main content

Advertisement

Log in

Mitophagy in renal interstitial fibrosis

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

As a high energy consumption organ, kidney relies on a large number of mitochondria to ensure normal physiological activities. Under specific stimulation, mitophagy and mitochondrial dynamics (fission, fusion) cooperatively regulate mitochondrial quality and participate in many life activities such as energy metabolism, inflammatory response, oxidative stress, cell senescence and death. Mitophagy plays a key role in the progression of acute kidney injury and chronic kidney disease. The early induction of oxidative stress in renal parenchyma, the activation of pro-inflammatory cytokines and TGF-β signal pathway are closely related to renal interstitial fibrosis. Macrophage reprogramming is also considered to be an important participant in the progression of kidney fibrosis. This review summarizes the molecular mechanism of mitochondrial autophagy and its relationship with the pathway of promoting fibrosis, and discusses the possibility of restoring mitophagy balance as a pharmacological target for the treatment of renal interstitial fibrosis, so as to provide new ideas for more efficient anti-fibrosis and delay the progress of chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Aguilera MO, Robledo E, Melani M, Wappner P, Colombo MI (2022) FKBP8 is a novel molecule that participates in the regulation of the autophagic pathway. Biochim Biophys Acta Mol Cell Res 1869(5):119212. https://doi.org/10.1016/j.bbamcr.2022.119212

    Article  CAS  PubMed  Google Scholar 

  2. Aparicio-Trejo OE, Tapia E, Molina-Jijon E, Medina-Campos ON, Macias-Ruvalcaba NA, Leon-Contreras JC et al (2017) Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: relation to oxidative stress and mitochondrial bioenergetics. BioFactors 43(2):293–310. https://doi.org/10.1002/biof.1338

    Article  CAS  PubMed  Google Scholar 

  3. Bai J, Liu F (2021) cGAS-STING signaling and function in metabolism and kidney diseases. J Mol Cell Biol 13(10):728–738. https://doi.org/10.1093/jmcb/mjab066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ban T, Ishihara T, Kohno H, Saita S, Ichimura A, Maenaka K et al (2017) Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat Cell Biol 19(7):856–863. https://doi.org/10.1038/ncb3560

    Article  CAS  PubMed  Google Scholar 

  5. Bhatia D, Capili A, Nakahira K, Muthukumar T, Torres LK, Choi A et al (2022) Conditional deletion of myeloid-specific mitofusin 2 but not mitofusin 1 promotes kidney fibrosis. Kidney Int 101(5):963–986. https://doi.org/10.1016/j.kint.2022.01.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhatia D, Chung KP, Nakahira K, Patino E, Rice MC, Torres LK et al (2019) Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI Insight. https://doi.org/10.1172/jci.insight.132826

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bhujabal Z, Birgisdottir AB, Sjottem E, Brenne HB, Overvatn A, Habisov S et al (2017) FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep 18(6):947–961. https://doi.org/10.15252/embr.201643147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boor P, Ostendorf T, Floege J (2014) PDGF and the progression of renal disease. Nephrol Dial Transplant 29(Suppl 1):i45–i54. https://doi.org/10.1093/ndt/gft273

    Article  CAS  PubMed  Google Scholar 

  9. Bratic A, Larsson NG (2013) The role of mitochondria in aging. J Clin Invest 123(3):951–957. https://doi.org/10.1172/JCI64125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cai C, Wu F, Zhuang B, Ou Q, Peng X, Shi N et al (2022) Empagliflozin activates Wnt/beta-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance against type-3 cardiorenal syndrome. Mol Metab 64:101553. https://doi.org/10.1016/j.molmet.2022.101553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X et al (2019) Cardiolipin-dependent mitophagy guides outcome after traumatic brain injury. J Neurosci 39(10):1930–1943. https://doi.org/10.1523/JNEUROSCI.3415-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y et al (2016) Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy 12(4):689–702. https://doi.org/10.1080/15548627.2016.1151580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen Y, Dorn GN (2013) PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340(6131):471–475. https://doi.org/10.1126/science.1231031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi ME (2020) Autophagy in kidney disease. Annu Rev Physiol 82:297–322. https://doi.org/10.1146/annurev-physiol-021119-034658

    Article  CAS  PubMed  Google Scholar 

  15. Chu CT, Bayir H, Kagan VE (2014) LC3 binds externalized cardiolipin on injured mitochondria to signal mitophagy in neurons: implications for Parkinson disease. Autophagy 10(2):376–378. https://doi.org/10.4161/auto.27191

    Article  CAS  PubMed  Google Scholar 

  16. Chung KW, Dhillon P, Huang S, Sheng X, Shrestha R, Qiu C et al (2019) Mitochondrial damage and activation of the STING pathway lead to renal inflammation and fibrosis. Cell Metab 30(4):784–799. https://doi.org/10.1016/j.cmet.2019.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Rita A, Peschiaroli A, D’Acunzo P, Strobbe D, Hu Z, Gruber J et al (2018) HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKalpha. Nat Commun 9(1):3755. https://doi.org/10.1038/s41467-018-05722-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ding WX, Ni HM, Li M, Liao Y, Chen X, Stolz DB et al (2010) Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. J Biol Chem 285(36):27879–27890. https://doi.org/10.1074/jbc.M110.119537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding Y, Kim S, Lee SY, Koo JK, Wang Z, Choi ME (2014) Autophagy regulates TGF-beta expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 25(12):2835–2846. https://doi.org/10.1681/ASN.2013101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duan P, Tan J, Miao Y, Zhang Q (2022) PINK1/Parkin-mediated mitophagy plays a protective role in albumin overload-induced renal tubular cell injury. Front Biosci (Landmark Ed) 27(6):184. https://doi.org/10.31083/j.fbl2706184

    Article  CAS  PubMed  Google Scholar 

  21. Dudek J (2017) Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5:90. https://doi.org/10.3389/fcell.2017.00090

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fujimura R, Yamamoto T, Takabatake Y, Takahashi A, Namba-Hamano T, Minami S et al (2020) Autophagy protects kidney from phosphate-induced mitochondrial injury. Biochem Biophys Res Commun 524(3):636–642. https://doi.org/10.1016/j.bbrc.2020.01.137

    Article  CAS  PubMed  Google Scholar 

  23. Gao A, Jiang J, Xie F, Chen L (2020) Bnip3 in mitophagy: novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin Chim Acta 506:72–83. https://doi.org/10.1016/j.cca.2020.02.024

    Article  CAS  PubMed  Google Scholar 

  24. Gorman GS, Chinnery PF, DiMauro S, Hirano M, Koga Y, McFarland R et al (2016) Mitochondrial diseases. Nat Rev Dis Primers 2:16080. https://doi.org/10.1038/nrdp.2016.80

    Article  PubMed  Google Scholar 

  25. Gottlieb RA, Piplani H, Sin J, Sawaged S, Hamid SM, Taylor DJ et al (2021) At the heart of mitochondrial quality control: many roads to the top. Cell Mol Life Sci 78(8):3791–3801. https://doi.org/10.1007/s00018-021-03772-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hahn A, Zuryn S (2019) Mitochondrial genome (mtDNA) mutations that generate reactive oxygen species. Antioxidants (Basel) 8(9):392. https://doi.org/10.3390/antiox8090392

    Article  CAS  PubMed  Google Scholar 

  27. He YL, Li J, Gong SH, Cheng X, Zhao M, Cao Y et al (2022) BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia. Cell Death Dis 13(11):966. https://doi.org/10.1038/s41419-022-05418-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421. https://doi.org/10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  29. Iorio R, Celenza G, Petricca S (2021) Mitophagy: molecular mechanisms, new concepts on Parkin activation and the emerging role of AMPK/ULK1 axis. Cells 11(1):30. https://doi.org/10.3390/cells11010030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ismail T, Kim Y, Lee H, Lee DS, Lee HS (2019) Interplay between mitochondrial peroxiredoxins and ROS in cancer development and progression. Int J Mol Sci 20(18):4407. https://doi.org/10.3390/ijms20184407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jadiya P, Tomar D (2020) Mitochondrial protein quality control mechanisms. Genes (Basel) 11(5):563. https://doi.org/10.3390/genes11050563

    Article  CAS  PubMed  Google Scholar 

  32. Jimenez-Uribe AP, Bellido B, Aparicio-Trejo OE, Tapia E, Sanchez-Lozada LG, Hernandez-Santos JA et al (2021) Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats. Free Radic Biol Med 172:358–371. https://doi.org/10.1016/j.freeradbiomed.2021.06.019

    Article  CAS  PubMed  Google Scholar 

  33. Jin L, Yu B, Liu G, Nie W, Wang J, Chen J et al (2022) Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis. FASEB J 36(6):e22342. https://doi.org/10.1096/fj.202200199RR

    Article  CAS  PubMed  Google Scholar 

  34. Jin SM, Youle RJ (2013) The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9(11):1750–1757. https://doi.org/10.4161/auto.26122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kagan VE, Jiang J, Huang Z, Tyurina YY, Desbourdes C, Cottet-Rousselle C et al (2016) NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death Differ 23(7):1140–1151. https://doi.org/10.1038/cdd.2015.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA et al (2014) Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33(23):2798–2813. https://doi.org/10.15252/embj.201488658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Investig 119(6):1420–1428. https://doi.org/10.1172/JCI39104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim MG, Kim SC, Ko YS, Lee HY, Jo SK, Cho W (2015) The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLoS ONE 10(12):e143961. https://doi.org/10.1371/journal.pone.0143961

    Article  CAS  Google Scholar 

  39. Kim SM, Kim YG, Kim DJ, Park SH, Jeong KH, Lee YH et al (2018) Inflammasome-independent role of NLRP3 mediates mitochondrial regulation in renal injury. Front Immunol 9:2563. https://doi.org/10.3389/fimmu.2018.02563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kleele T, Rey T, Winter J, Zaganelli S, Mahecic D, Perreten LH et al (2021) Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593(7859):435–439. https://doi.org/10.1038/s41586-021-03510-6

    Article  CAS  PubMed  Google Scholar 

  41. Kuang Y, Ma K, Zhou C, Ding P, Zhu Y, Chen Q et al (2016) Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy 12(12):2363–2373. https://doi.org/10.1080/15548627.2016.1238552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Landes T, Emorine LJ, Courilleau D, Rojo M, Belenguer P, Arnaune-Pelloquin L (2010) The BH3-only Bnip3 binds to the dynamin Opa1 to promote mitochondrial fragmentation and apoptosis by distinct mechanisms. EMBO Rep 11(6):459–465. https://doi.org/10.1038/embor.2010.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL et al (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524(7565):309–314. https://doi.org/10.1038/nature14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee SY, Kim SI, Choi ME (2015) Therapeutic targets for treating fibrotic kidney diseases. Transl Res 165(4):512–530. https://doi.org/10.1016/j.trsl.2014.07.010

    Article  CAS  PubMed  Google Scholar 

  45. Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW (2016) Mitochondrial fission increases apoptosis and decreases autophagy in renal proximal tubular epithelial cells treated with high glucose. DNA Cell Biol 35(11):657–665. https://doi.org/10.1089/dna.2016.3261

    Article  CAS  PubMed  Google Scholar 

  46. Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ (2010) Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol 177(3):1065–1071. https://doi.org/10.2353/ajpath.2010.090923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li M, Jia J, Zhang X, Dai H (2020) Selective binding of mitophagy receptor protein Bcl-rambo to LC3/GABARAP family proteins. Biochem Biophys Res Commun 530(1):292–300. https://doi.org/10.1016/j.bbrc.2020.07.039

    Article  CAS  PubMed  Google Scholar 

  48. Li N, Wang H, Jiang C, Zhang M (2018) Renal ischemia/reperfusion-induced mitophagy protects against renal dysfunction via Drp1-dependent-pathway. Exp Cell Res 369(1):27–33. https://doi.org/10.1016/j.yexcr.2018.04.025

    Article  CAS  PubMed  Google Scholar 

  49. Li S, Lin Q, Shao X, Zhu X, Wu J, Wu B et al (2020) Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radic Biol Med 152:632–649. https://doi.org/10.1016/j.freeradbiomed.2019.12.005

    Article  CAS  PubMed  Google Scholar 

  50. Lim GG, Lim KL (2017) Parkin-independent mitophagy-FKBP8 takes the stage. EMBO Rep 18(6):864–865. https://doi.org/10.15252/embr.201744313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu T, Yang Q, Zhang X, Qin R, Shan W, Zhang H et al (2020) Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci 257:118116. https://doi.org/10.1016/j.lfs.2020.118116

    Article  CAS  PubMed  Google Scholar 

  52. Lu H, Wu L, Liu L, Ruan Q, Zhang X, Hong W et al (2018) Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization. Biochem Pharmacol 154:203–212. https://doi.org/10.1016/j.bcp.2018.05.007

    Article  CAS  PubMed  Google Scholar 

  53. Lu YP, Wu HW, Zhu T, Li XT, Zuo J, Hasan AA et al (2022) Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy. Biomed Pharmacother 156:113947. https://doi.org/10.1016/j.biopha.2022.113947

    Article  CAS  PubMed  Google Scholar 

  54. Luevano-Martinez LA, Pinto I, Yoshinaga MY, Miyamoto S (2022) In yeast, cardiolipin unsaturation level plays a key role in mitochondrial function and inner membrane integrity. Biochim Biophys Acta Bioenerg 1863(7):148587. https://doi.org/10.1016/j.bbabio.2022.148587

    Article  CAS  PubMed  Google Scholar 

  55. Lv M, Wang C, Li F, Peng J, Wen B, Gong Q et al (2017) Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 8(1):25–38. https://doi.org/10.1007/s13238-016-0328-8

    Article  CAS  PubMed  Google Scholar 

  56. Lv W, Booz GW, Wang Y, Fan F, Roman RJ (2018) Inflammation and renal fibrosis: recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol 820:65–76. https://doi.org/10.1016/j.ejphar.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  57. Matsuda N (2016) Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade. J Biochem 159(4):379–385. https://doi.org/10.1093/jb/mvv125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B, Wunderlich FT et al (2008) Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22(4):476–488. https://doi.org/10.1101/gad.460708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murakawa T, Okamoto K, Omiya S, Taneike M, Yamaguchi O, Otsu K (2019) A mammalian mitophagy receptor, Bcl2-L-13, recruits the ULK1 complex to induce mitophagy. Cell Rep 26(2):338–345. https://doi.org/10.1016/j.celrep.2018.12.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T et al (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527. https://doi.org/10.1038/ncomms8527

    Article  PubMed  Google Scholar 

  61. Mylonas KJ, O’Sullivan ED, Humphries D, Baird DP, Docherty MH, Neely SA et al (2021) Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci Transl Med. https://doi.org/10.1126/scitranslmed.abb0203

    Article  PubMed  Google Scholar 

  62. Naik E, Dixit VM (2011) Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J Exp Med 208(3):417–420. https://doi.org/10.1084/jem.20110367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ni Y, Wu GH, Cai JJ, Zhang R, Zheng Y, Liu JQ et al (2022) Tubule-mitophagic secretion of SerpinG1 reprograms macrophages to instruct anti-septic acute kidney injury efficacy of high-dose ascorbate mediated by NRF2 transactivation. Int J Biol Sci 18(13):5168–5184. https://doi.org/10.7150/ijbs.74430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nikolic-Paterson DJ, Wang S, Lan HY (2014) Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011) 4(1):34–38. https://doi.org/10.1038/kisup.2014.7

    Article  CAS  PubMed  Google Scholar 

  65. Otera H, Miyata N, Kuge O, Mihara K (2016) Drp1-dependent mitochondrial fission via MiD49/51 is essential for apoptotic cristae remodeling. J Cell Biol 212(5):531–544. https://doi.org/10.1083/jcb.201508099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Palikaras K, Lionaki E, Tavernarakis N (2016) Mitophagy: in sickness and in health. Mol Cell Oncol 3(1):e1056332. https://doi.org/10.1080/23723556.2015.1056332

    Article  CAS  PubMed  Google Scholar 

  67. Perry HM, Huang L, Wilson RJ, Bajwa A, Sesaki H, Yan Z et al (2018) Dynamin-related protein 1 deficiency promotes recovery from AKI. J Am Soc Nephrol 29(1):194–206. https://doi.org/10.1681/ASN.2017060659

    Article  CAS  PubMed  Google Scholar 

  68. Pfanner N, Warscheid B, Wiedemann N (2019) Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol 20(5):267–284. https://doi.org/10.1038/s41580-018-0092-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pimentel JJ, Montero A, Wang S, Yosipiv I, El-Dahr S, Martinez-Maldonado M (1995) Sequential changes in renal expression of renin-angiotensin system genes in acute unilateral ureteral obstruction. Kidney Int 48(4):1247–1253. https://doi.org/10.1038/ki.1995.408

    Article  CAS  PubMed  Google Scholar 

  70. Rogov VV, Suzuki H, Marinkovic M, Lang V, Kato R, Kawasaki M et al (2017) Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci Rep 7(1):1131. https://doi.org/10.1038/s41598-017-01258-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Savio-Silva C, Soinski-Sousa PE, Simplicio-Filho A, Bastos R, Beyerstedt S, Rangel EB (2021) Therapeutic potential of mesenchymal stem cells in a pre-clinical model of diabetic kidney disease and obesity. Int J Mol Sci 22(4):1546. https://doi.org/10.3390/ijms22041546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schuster R, Okamoto K (2022) An overview of the molecular mechanisms of mitophagy in yeast. Biochim Biophys Acta Gen Subj 1866(11):130203. https://doi.org/10.1016/j.bbagen.2022.130203

    Article  CAS  PubMed  Google Scholar 

  73. See EJ, Jayasinghe K, Glassford N, Bailey M, Johnson DW, Polkinghorne KR et al (2019) Long-term risk of adverse outcomes after acute kidney injury: a systematic review and meta-analysis of cohort studies using consensus definitions of exposure. Kidney Int 95(1):160–172. https://doi.org/10.1016/j.kint.2018.08.036

    Article  PubMed  Google Scholar 

  74. Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM et al (2015) AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22(3):419–432. https://doi.org/10.1038/cdd.2014.139

    Article  CAS  PubMed  Google Scholar 

  75. Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM (2017) Cellular senescence in renal ageing and disease. Nat Rev Nephrol 13(2):77–89. https://doi.org/10.1038/nrneph.2016.183

    Article  CAS  PubMed  Google Scholar 

  76. Sun D, Wu R, Zheng J, Li P, Yu L (2018) Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res 28(4):405–415. https://doi.org/10.1038/s41422-018-0017-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Szeto HH, Liu S, Soong Y, Seshan SV, Cohen-Gould L, Manichev V et al (2017) Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1beta and IL-18 and arrests CKD. J Am Soc Nephrol 28(5):1437–1449. https://doi.org/10.1681/ASN.2016070761

    Article  CAS  PubMed  Google Scholar 

  78. Tang C, Han H, Yan M, Zhu S, Liu J, Liu Z et al (2018) PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Autophagy 14(5):880–897. https://doi.org/10.1080/15548627.2017.1405880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang H, Yang M, Liu Y, Zhu X, Liu S, Liu H et al (2022) Melatonin alleviates renal injury by activating mitophagy in diabetic nephropathy. Front Endocrinol (Lausanne) 13:889729. https://doi.org/10.3389/fendo.2022.889729

    Article  PubMed  Google Scholar 

  80. Tang PM, Nikolic-Paterson DJ, Lan HY (2019) Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 15(3):144–158. https://doi.org/10.1038/s41581-019-0110-2

    Article  PubMed  Google Scholar 

  81. Tang PM, Zhou S, Li CJ, Liao J, Xiao J, Wang QM et al (2018) The proto-oncogene tyrosine protein kinase Src is essential for macrophage-myofibroblast transition during renal scarring. Kidney Int 93(1):173–187. https://doi.org/10.1016/j.kint.2017.07.026

    Article  CAS  PubMed  Google Scholar 

  82. Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62(3):341–360. https://doi.org/10.1042/EBC20170104

    Article  PubMed  PubMed Central  Google Scholar 

  83. Toki D, Zhang W, Hor KL, Liuwantara D, Alexander SI, Yi Z et al (2014) The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation. Am J Transplant 14(9):2126–2136. https://doi.org/10.1111/ajt.12803

    Article  CAS  PubMed  Google Scholar 

  84. Topcu SO, Celik S, Erturhan S, Erbagci A, Yagci F, Ucak R (2008) Verapamil prevents the apoptotic and hemodynamic changes in response to unilateral ureteral obstruction. Int J Urol 15(4):350–355. https://doi.org/10.1111/j.1442-2042.2008.01992.x

    Article  PubMed  Google Scholar 

  85. Turco E, Savova A, Gere F, Ferrari L, Romanov J, Schuschnig M et al (2021) Reconstitution defines the roles of p62, NBR1 and TAX1BP1 in ubiquitin condensate formation and autophagy initiation. Nat Commun 12(1):5212. https://doi.org/10.1038/s41467-021-25572-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vargas J, Wang C, Bunker E, Hao L, Maric D, Schiavo G et al (2019) Spatiotemporal control of ULK1 activation by NDP52 and TBK1 during selective autophagy. Mol Cell 74(2):347–362. https://doi.org/10.1016/j.molcel.2019.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang D, Kang L, Chen C, Guo J, Du L, Zhou D et al (2022) Loss of legumain induces premature senescence and mediates aging-related renal fibrosis. Aging Cell 21(3):e13574. https://doi.org/10.1111/acel.13574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang J, Zhu P, Li R, Ren J, Zhang Y, Zhou H (2020) Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics 10(1):384–397. https://doi.org/10.7150/thno.40098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang J, Zhu P, Li R, Ren J, Zhou H (2020) Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol 30:101415. https://doi.org/10.1016/j.redox.2019.101415

    Article  CAS  PubMed  Google Scholar 

  90. Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y et al (2016) TGF-beta/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget 7(8):8809–8822. https://doi.org/10.18632/oncotarget.6604

    Article  PubMed  Google Scholar 

  91. Wei Y, Chiang WC, Sumpter RJ, Mishra P, Levine B (2017) Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168(1–2):224–238. https://doi.org/10.1016/j.cell.2016.11.042

    Article  CAS  PubMed  Google Scholar 

  92. Wild P, McEwan DG, Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127(Pt 1):3–9. https://doi.org/10.1242/jcs.140426

    Article  CAS  PubMed  Google Scholar 

  93. Wu J, Raman A, Coffey NJ, Sheng X, Wahba J, Seasock MJ et al (2021) The key role of NLRP3 and STING in APOL1-associated podocytopathy. J Clin Investig. https://doi.org/10.1172/JCI136329

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wu WH, Zhang MP, Zhang F, Liu F, Hu ZX, Hu QD et al (2011) The role of programmed cell death in streptozotocin-induced early diabetic nephropathy. J Endocrinol Invest 34(9):e296–e301. https://doi.org/10.3275/7741

    Article  CAS  PubMed  Google Scholar 

  95. Xian H, Watari K, Sanchez-Lopez E, Offenberger J, Onyuru J, Sampath H et al (2022) Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 55(8):1370–1385. https://doi.org/10.1016/j.immuni.2022.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Xiao JJ, Liu Q, Li Y, Peng FF, Wang S, Zhang Z et al (2022) Regulator of calcineurin 1 deletion attenuates mitochondrial dysfunction and apoptosis in acute kidney injury through JNK/Mff signaling pathway. Cell Death Dis 13(9):774. https://doi.org/10.1038/s41419-022-05220-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xiao L, Xu X, Zhang F, Wang M, Xu Y, Tang D et al (2017) The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1. Redox Biol 11:297–311. https://doi.org/10.1016/j.redox.2016.12.022

    Article  CAS  PubMed  Google Scholar 

  98. Xiao T, Guan X, Nie L, Wang S, Sun L, He T et al (2014) Rapamycin promotes podocyte autophagy and ameliorates renal injury in diabetic mice. Mol Cell Biochem 394(1–2):145–154. https://doi.org/10.1007/s11010-014-2090-7

    Article  CAS  PubMed  Google Scholar 

  99. Xie Y, Liu J, Kang R, Tang D (2020) Mitophagy receptors in tumor biology. Front Cell Dev Biol 8:594203. https://doi.org/10.3389/fcell.2020.594203

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xiong W, Ma Z, An D, Liu Z, Cai W, Bai Y et al (2019) Mitofusin 2 participates in mitophagy and mitochondrial fusion against angiotensin ii-induced cardiomyocyte injury. Front Physiol 10:411. https://doi.org/10.3389/fphys.2019.00411

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yamashita SI, Kanki T (2017) How autophagy eats large mitochondria: autophagosome formation coupled with mitochondrial fragmentation. Autophagy 13(5):980–981. https://doi.org/10.1080/15548627.2017.1291113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M et al (2020) PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy 16(3):419–434. https://doi.org/10.1080/15548627.2019.1628520

    Article  CAS  PubMed  Google Scholar 

  103. Yang X, Yin H, Zhang Y, Li X, Tong H, Zeng Y et al (2018) Hypoxia-induced autophagy promotes gemcitabine resistance in human bladder cancer cells through hypoxia-inducible factor 1alpha activation. Int J Oncol 53(1):215–224. https://doi.org/10.3892/ijo.2018.4376

    Article  CAS  PubMed  Google Scholar 

  104. Yoo SM, Yamashita SI, Kim H, Na D, Lee H, Kim SJ et al (2020) FKBP8 LIRL-dependent mitochondrial fragmentation facilitates mitophagy under stress conditions. FASEB J 34(2):2944–2957. https://doi.org/10.1096/fj.201901735R

    Article  CAS  PubMed  Google Scholar 

  105. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14. https://doi.org/10.1038/nrm3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. https://doi.org/10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yuan Y, Zheng Y, Zhang X, Chen Y, Wu X, Wu J et al (2017) BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2. Autophagy 13(10):1754–1766. https://doi.org/10.1080/15548627.2017.1357792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zeng LF, Xiao Y, Sun L (2019) A glimpse of the mechanisms related to renal fibrosis in diabetic nephropathy. Adv Exp Med Biol 1165:49–79. https://doi.org/10.1007/978-981-13-8871-2_4

    Article  CAS  PubMed  Google Scholar 

  109. Zhang Y, Wang Y, Xu J, Tian F, Hu S, Chen Y et al (2019) Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways. J Pineal Res 66(2):e12542. https://doi.org/10.1111/jpi.12542

    Article  CAS  PubMed  Google Scholar 

  110. Zhao Y, Guo Y, Jiang Y, Zhu X, Liu Y, Zhang X (2017) Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem Biophys Res Commun 494(1–2):42–50. https://doi.org/10.1016/j.bbrc.2017.10.088

    Article  CAS  PubMed  Google Scholar 

  111. Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y (2018) Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2alpha-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 25(6):1080–1093. https://doi.org/10.1038/s41418-018-0086-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work received support by the Joint Fund for Innovation and Development of Natural Science Foundation of Shandong Province, China (ZR2022LZY005).

Author information

Authors and Affiliations

Authors

Contributions

Z-AG and Y-YL conceived the study. JS and CL wrote and revised the manuscript. Y-YL revised the manuscript. All the authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Zhao-An Guo.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Liu, C., Liu, YY. et al. Mitophagy in renal interstitial fibrosis. Int Urol Nephrol 56, 167–179 (2024). https://doi.org/10.1007/s11255-023-03686-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03686-y

Keywords

Navigation