Skip to main content
Log in

Combinative predictive effect of left ventricular mass index, ratio of HDL and CRP for progression of chronic kidney disease in non-dialysis patient

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

This current study scrutinized the association among left ventricular mass index (LVMI), ratio of high-density lipoprotein (HDL) and C-reactive protein (CRP), and renal function. Furthermore, we examined the predictive effects of left ventricular mass index and HDL/CRP on progression of non-dialysis chronic kidney disease.

Methods

We enrolled adult patients with chronic kidney disease (CKD) who were not receiving dialysis and obtained follow-up data on them. We extracted and compared data between different groups. To investigate the relationship between left ventricular mass index (LVMI), high-density lipoprotein (HDL)/C-reactive protein (CRP) levels, and CKD, we employed linear regression analysis, Kaplan–Meier analysis, and Cox proportional hazards regression analysis.

Results

Our study enrolled a total of 2351 patients. Compared with those in the non-progression group, subjects in the CKD progression group had lower ln(HDL/CRP) levels (− 1.56 ± 1.78 vs. − 1.14 ± 1.77, P < 0.001) but higher left ventricular mass index (LVMI) values (115.45 ± 29.8 vs. 102.8 ± 26.31 g/m2, P < 0.001). Moreover, after adjusting for demographic factors, ln(HDL/CRP) was found to be positively associated with estimated glomerular filtration rate (eGFR) (B = 1.18, P < 0.001), while LVMI was negatively associated with eGFR (B = − 0.15, P < 0.001). In the end, we found that both LVH (HR = 1.53, 95% CI 1.15 to 2.05, P = 0.004) and lower ln(HDL/CRP) (HR = 1.46, 95% CI 1.08 to 1.96, P = 0.013) independently predicted CKD progression. Notably, the combined predictive power of these variables was stronger than either variable alone (HR = 1.98, 95% CI 1.5 to 2.62, P < 0.001).

Conclusion

Our study findings indicate that in pre-dialysis patients, both HDL/CRP and LVMI are associated with basic renal function and are independently correlated with CKD progression. These variables may serve as predictors for CKD progression, and their combined predictive power is stronger than that of either variable alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, Chen N, Zhang JE, Hu Z, Liu F, Hong D, Ma L, Liu H, Zhou X, Chen J, Pan L, Chen W, Wang W, Li X, Wang H (2012) Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet 379:815–822

    Article  PubMed  Google Scholar 

  2. Yeh HC, Lo YC, Ting IW, Chu PL, Chang SN, Chiang HY, Kuo CC (2020) 24-hour serum creatinine variation associates with short- and long-term all-cause mortality: a real-world insight into early detection of acute kidney injury. Sci Rep 10:6552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guo XS, Chen SQ, Duan CY, Li HL, Bei WJ, Liu Y, Tan N, Chen PY, Chen JY (2017) Association of post-procedural early (within 24h) increases in serum creatinine with all-cause mortality after coronary angiography. Clin Chim Acta 474:96–101

    Article  CAS  PubMed  Google Scholar 

  4. Losito A, Nunzi E, Pittavini L, Zampi I, Zampi E (2018) Cardiovascular morbidity and long term mortality associated with in hospital small increases of serum creatinine. J Nephrol 31:71–77

    Article  CAS  PubMed  Google Scholar 

  5. Stuveling EM, Hillege HL, Bakker SJ, Gans RO, De Jong PE, De Zeeuw D (2003) C-reactive protein is associated with renal function abnormalities in a non-diabetic population. Kidney Int 63:654–661

    Article  CAS  PubMed  Google Scholar 

  6. Chen S, Liu H, Liu X, Li Y, Li M, Liang Y, Shao X, Holthofer H, Zou H (2013) Central obesity C-reactive protein and chronic kidney disease: a community-based cross-sectional study in southern China. Kidney Blood Press Res 37:392–401

    Article  CAS  PubMed  Google Scholar 

  7. Sesso HD, Wang L, Buring JE, Ridker PM, Gaziano JM (2007) Comparison of interleukin-6 and C-reactive protein for the risk of developing hypertension in women. Hypertension 49:304–310

    Article  CAS  PubMed  Google Scholar 

  8. Savoia C, Schiffrin EL (2006) Inflammation in hypertension. Curr Opin Nephrol Hypertens 15:152–158

    CAS  PubMed  Google Scholar 

  9. Boos CJ, Lip GY (2006) Is hypertension an inflammatory process? Curr Pharm Des 12:1623–1635

    Article  CAS  PubMed  Google Scholar 

  10. Di Napoli M, Papa F (2006) Systemic inflammation, blood pressure, and stroke outcome. J Clin Hypertens 8:187–194

    Article  Google Scholar 

  11. Black S, Kushner I, Samols D (2004) C-reactive protein. J Biol Chem 279:48487–48490

    Article  CAS  PubMed  Google Scholar 

  12. Rader DJ (2006) Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Investig 116:3090–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganjali S, Gotto AJ, Ruscica M, Atkin SL, Butler AE, Banach M, Sahebkar A (2018) Monocyte-to-HDL-cholesterol ratio as a prognostic marker in cardiovascular diseases. J Cell Physiol 233:9237–9246

    Article  CAS  PubMed  Google Scholar 

  14. Usta A, Avci E, Bulbul CB, Kadi H, Adali E (2018) The monocyte counts to HDL cholesterol ratio in obese and lean patients with polycystic ovary syndrome. Reprod Biol Endocrinol 16:34

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhan X, Pan D, Wei X, Wen D, Yan C, Xiao J (2020) Monocyte to high-density lipoprotein ratio and cardiovascular events in patients on peritoneal dialysis. Nutr Metab Cardiovasc Dis 30:1130–1136

    Article  CAS  PubMed  Google Scholar 

  16. Gembillo G, Siligato R, Cernaro V, Satta E, Conti G, Salvo A, Romeo A, Calabrese V, Sposito G, Ferlazzo G, Santoro D (2022) Monocyte to HDL ratio: a novel marker of resistant hypertension in CKD patients. Int Urol Nephrol 54:395–403

    Article  CAS  PubMed  Google Scholar 

  17. Nam KH, Chang TI, Joo YS, Kim J, Lee S, Lee C, Yun HR, Park JT, Yoo TH, Sung SA, Lee KB, Oh KH, Kim SW, Lee J, Kang SW, Choi KH, Ahn C, Han SH (2019) Association between serum high-density lipoprotein cholesterol levels and progression of chronic kidney disease: results from the KNOW-CKD. J Am Heart Assoc 8:e11162

    Article  Google Scholar 

  18. Kanda E, Ai M, Okazaki M, Yoshida M, Maeda Y (2016) Association of high-density lipoprotein subclasses with chronic kidney disease progression atherosclerosis, and klotho. PLoS ONE 11:e166459

    Article  Google Scholar 

  19. Li B, Liu HY, Guo SH, Sun P, Gong FM, Jia BQ (2015) Impact of early enteral and parenteral nutrition on prealbumin and high-sensitivity C-reactive protein after gastric surgery. Genetics Mol Res 14:7130–7135

    Article  CAS  Google Scholar 

  20. Freitas CO, Gomes-Filho IS, Naves RC, Nogueira FGR, Cruz SS, Santos CA, Dunningham L, Miranda LF, Barbosa MD (2012) Influence of periodontal therapy on C-reactive protein level: a systematic review and meta-analysis. J Appl Oral Sci 20:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Block G, Jensen C, Dietrich M, Norkus EP, Hudes M, Packer L (2004) Plasma C-reactive protein concentrations in active and passive smokers: influence of antioxidant supplementation. J Am Coll Nutr 23:141–147

    Article  CAS  PubMed  Google Scholar 

  22. Demmer RT, Trinquart L, Zuk A, Fu BC, Blomkvist J, Michalowicz BS, Ravaud P, Desvarieux M (2013) The influence of anti-infective periodontal treatment on C-reactive protein: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 8:e77441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitrovic V, Klein HH, Krekel N, Kreuzer J, Fichtlscherer S, Schirmer A, Paar WD, Hamm CW (2005) Influence of the angiotensin converting enzyme inhibitor ramipril on high-sensitivity C-reactive protein (hs-CRP) in patients with documented atherosclerosis. Z Kardiol 94:336–342

    Article  CAS  PubMed  Google Scholar 

  24. Zheng X, Zeng N, Wang A, Zhu Z, Zhong C, Xu T, Xu T, Peng Y, Peng H, Li Q, Ju Z, Geng D, Zhang Y, He J (2018) Elevated C-reactive protein and depressed high-density lipoprotein cholesterol are associated with poor function outcome after ischemic stroke. Curr Neurovasc Res 15:226–233

    Article  CAS  PubMed  Google Scholar 

  25. Yano M, Nishino M, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Tanaka A, Matsunaga-Lee Y, Egami Y, Shutta R, Tanouchi J, Yamada T, Yasumura Y, Tamaki S, Hayashi T, Nakagawa A, Nakagawa Y, Suna S, Nakatani D, Hikoso S, Sakata Y (2021) High density lipoprotein cholesterol/C reactive protein ratio in heart failure with preserved ejection fraction. ESC Heart Failure 8:2791–2801

    Article  PubMed  PubMed Central  Google Scholar 

  26. Agarwal R, Song RJ, Vasan RS, Xanthakis V (2020) Left ventricular mass and incident chronic kidney disease. Hypertension 75:702–706

    Article  CAS  PubMed  Google Scholar 

  27. Gottdiener JS, Bednarz J, Devereux R, Gardin J, Klein A, Manning WJ, Morehead A, Kitzman D, Oh J, Quinones M, Schiller NB, Stein JH, Weissman NJ (2004) American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr 17:1086–1119

    PubMed  Google Scholar 

  28. Drawz PE, Beddhu S, Bignall ON, Cohen JB, Flynn JT, Ku E, Rahman M, Thomas G, Weir MR, Whelton PK (2022) KDOQI US commentary on the 2021 KDIGO clinical practice guideline for the management of blood pressure in CKD. Am J Kidney Dis 79:311–327

    Article  PubMed  Google Scholar 

  29. KDIGO (2020) Clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int 98(2020):S1–S115

    Google Scholar 

  30. Levin A, Agarwal R, Herrington WG, Heerspink HL, Mann J, Shahinfar S, Tuttle KR, Donner JA, Jha V, Nangaku M, de Zeeuw D, Jardine MJ, Mahaffey KW, Thompson AM, Beaucage M, Chong K, Roberts GV, Sunwold D, Vorster H, Warren M, Damster S, Malik C, Perkovic V (2020) International consensus definitions of clinical trial outcomes for kidney failure: 2020. Kidney Int 98:849–859

    Article  PubMed  Google Scholar 

  31. Harkness A, Ring L, Augustine DX, Oxborough D, Robinson S, Sharma V (2020) Normal reference intervals for cardiac dimensions and function for use in echocardiographic practice: a guideline from the British society of echocardiography. Echo Res Practice 7:G1–G18

    Article  Google Scholar 

  32. Fox CS, Larson MG, Leip EP, Culleton B, Wilson PW, Levy D (2004) Predictors of new-onset kidney disease in a community-based population. JAMA-J Am Med Assoc 291:844–850

    Article  CAS  Google Scholar 

  33. Klein R, Klein BE, Moss SE, Cruickshanks KJ, Brazy PC (1999) The 10-year incidence of renal insufficiency in people with type 1 diabetes. Diabetes Care 22:743–751

    Article  CAS  PubMed  Google Scholar 

  34. Kontush A (2014) HDL-mediated mechanisms of protection in cardiovascular disease. Cardiovasc Res 103:341–349

    Article  CAS  PubMed  Google Scholar 

  35. Cernaro V, Calabrese V, Loddo S, Corsaro R, Macaione V, Ferlazzo VT, Cigala RM, Crea F, De Stefano C, Gembillo G, Romeo A, Longhitano E, Santoro D, Buemi M, Benvenga S (2022) Indole-3-acetic acid correlates with monocyte-to-high-density lipoprotein (HDL) ratio (MHR) in chronic kidney disease patients. Int Urol Nephrol 54:2355–2364

    Article  CAS  PubMed  Google Scholar 

  36. Raupachova J, Kopecky C, Cohen G (2019) High-density lipoprotein from chronic kidney disease patients modulates polymorphonuclear leukocytes. Toxins. https://doi.org/10.3390/toxins11020073

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vaziri ND, Navab M, Fogelman AM (2010) HDL metabolism and activity in chronic kidney disease. Nat Rev Nephrol 6:287–296

    Article  CAS  PubMed  Google Scholar 

  38. Shen Y, Cai R, Sun J, Dong X, Huang R, Tian S, Wang S (2017) Diabetes mellitus as a risk factor for incident chronic kidney disease and end-stage renal disease in women compared with men: a systematic review and meta-analysis. Endocrine 55:66–76

    Article  CAS  PubMed  Google Scholar 

  39. Sarnak MJ, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, Gill JS, Hlatky MA, Jardine AG, Landmesser U, Newby LK, Herzog CA, Cheung M, Wheeler DC, Winkelmayer WC, Marwick TH (2019) Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J Am Coll Cardiol 74:1823–1838

    Article  CAS  PubMed  Google Scholar 

  40. Glassock RJ, Pecoits-Filho R, Barberato SH (2009) Left ventricular mass in chronic kidney disease and ESRD. Clin J Am Soc Nephrol 4(Suppl 1):S79–S91

    Article  PubMed  Google Scholar 

  41. Malik J, Tuka V, Mokrejsova M, Holaj R, Tesar V (2009) Mechanisms of chronic heart failure development in end-stage renal disease patients on chronic hemodialysis. Physiol Res 58:613–621

    Article  CAS  PubMed  Google Scholar 

  42. Lijnen P, Petrov V (1999) Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol 31:949–970

    Article  CAS  PubMed  Google Scholar 

  43. Gross ML, Ritz E (2008) Hypertrophy and fibrosis in the cardiomyopathy of uremia–beyond coronary heart disease. Semin Dial 21:308–318

    Article  PubMed  Google Scholar 

  44. Ritz E (2009) Left ventricular hypertrophy in renal disease: beyond preload and afterload. Kidney Int 75:771–773

    Article  PubMed  Google Scholar 

  45. Mominadam S, Ozkahya M, Kayikcioglu M, Toz H, Asci G, Duman S, Ergin P, Kirbiyik S, Ok E, Basci A (2008) Interdialytic blood pressure obtained by ambulatory blood pressure measurement and left ventricular structure in hypertensive hemodialysis patients. Hemodial Int 12:322–327

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by: Key Project of Basic and Applied Basic Research Fund of Guangdong Province (No. 2020B1515120037) to Dr Xun Liu; Special Fund for Clinical Medical Research of the Third Affiliated Hospital of Sun Yat-sen University (No. YHJH201806) to Dr Xun Liu. The National Natural Science Foundation of China (Grant No.81873631, 81370866, 81070612) to Dr Xun Liu; The Guangzhou Science and technology planning project (Grant No.202002020047) to Dr Xun Liu; NSFC-Guangdong United Fund (Grant No. 2020B1515120037) to Dr Xun Liu.

Author information

Authors and Affiliations

Authors

Contributions

LT, SL, JL, XG, PL, JF—analysis and interpretation of data and preparation of the manuscript. XL—study concept and design, and preparation and critical review of the manuscript. XL—critical review and statistical guidance of the revised manuscript. All authors have approved the final manuscript.

Corresponding author

Correspondence to Xun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Li, S., Guo, X. et al. Combinative predictive effect of left ventricular mass index, ratio of HDL and CRP for progression of chronic kidney disease in non-dialysis patient. Int Urol Nephrol 56, 205–215 (2024). https://doi.org/10.1007/s11255-023-03624-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03624-y

Keywords

Navigation