Skip to main content

Advertisement

Log in

A review on renal autologous cell transplantation: an investigational approach towards chronic kidney disease

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Chronic kidney disease is among the most common causes of mortality and morbidity in adult population with limited therapeutic approaches including various medications and kidney replacement therapies. Kidney transplantation is the gold standard therapeutic alternative for the management of chronic kidney disease; nonetheless, important drawbacks include the lack of adequate living or deceased donors, high rates of pre- and post-operative complications including surgical complications, infectious complications and medication-induced adverse effects. With the latest preclinical and in vitro studies demonstrating the potentiality of kidney cells obtained from diseased kidneys to convert into fully functional kidney cells lead to a novel therapeutic alternative referred as autologous selected renal cell transplantation. Even though the clinical studies investigating the efficiency and adverse effects of autologous selected renal cell transplantation are limited, it is no doubt promising. The need for future large-scale studies on chronic kidney disease patients from a diversity of etiologies is clear for the better establishment of the therapeutic potential of autologous selected renal cell transplantation. In this narrative review, our aim is to evaluate the role of renal autologous stem cell therapy in the management of chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Our manuscript has no associated data.

References

  1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS et al (2016) Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS ONE 11(7):e0158765

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bikbov B, Purcell CA, Levey AS, Smith M, Abdoli A, Abebe M, Adebayo OM, Afarideh M, Agarwal SK, Agudelo-Botero M, Ahmadian E (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global burden of disease study 2017. Lancet 395(10225):709–733

    Article  Google Scholar 

  3. Chen TK, Knicely DH, Grams ME (2019) Chronic kidney disease diagnosis and management: a review. JAMA 322(13):1294–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hannan M, Ansari S, Meza N, Anderson AH, Srivastava A, Waikar S et al (2021) Risk factors for CKD progression: overview of findings from the CRIC study. Clin J Am Soc Nephrol 16(4):648–659

    Article  CAS  PubMed  Google Scholar 

  5. Ruiz-Ortega M, Rayego-Mateos S, Lamas S, Ortiz A, Rodrigues-Diez RR (2020) Targeting the progression of chronic kidney disease. Nat Rev Nephrol 16(5):269–288

    Article  PubMed  Google Scholar 

  6. Haberal M, Boyvat F, Akdur A, Kırnap M, Özçelik Ü, Yarbuğ KF (2016) Surgical complications after kidney transplantation. Exp Clin Transplant 14(6):587–595

    PubMed  Google Scholar 

  7. Agrawal A, Ison MG, Danziger-Isakov L (2022) Long-term infectious complications of kidney transplantation. Clin J Am Soc Nephrol 17(2):286–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest 93(5):2175–2188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115(7):1756–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F et al (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17(9):2443–2456

    Article  CAS  PubMed  Google Scholar 

  11. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2(3):284–291

    Article  CAS  PubMed  Google Scholar 

  12. Humphreys BD, Czerniak S, DiRocco DP, Hasnain W, Cheema R, Bonventre JV (2011) Repair of injured proximal tubule does not involve specialized progenitors. Proc Natl Acad Sci USA 108(22):9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kramann R, Humphreys BD (2014) Kidney pericytes: roles in regeneration and fibrosis. Semin Nephrol 34(4):374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koniusz S, Andrzejewska A, Muraca M, Srivastava AK, Janowski M, Lukomska B (2016) Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools. Front Cell Neurosci 10:109

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu B, Zhang X, Li X (2014) Exosomes derived from mesenchymal stem cells. Int J Mol Sci 15(3):4142–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6(4):481–492

    Article  PubMed  Google Scholar 

  17. Lindoso RS, Collino F, Bruno S, Araujo DS, Sant’Anna JF, Tetta C et al (2014) Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury. Stem Cells Dev 23(15):1809–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26(5):1474–1483

    Article  CAS  PubMed  Google Scholar 

  19. Wang R, Lin M, Li L, Li L, Qi G, Rong R et al (2014) Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats. Zhonghua Yi Xue Za Zhi 94(42):3298–3303

    CAS  PubMed  Google Scholar 

  20. Zou X, Gu D, Xing X, Cheng Z, Gong D, Zhang G et al (2016) Human mesenchymal stromal cell-derived extracellular vesicles alleviate renal ischemic reperfusion injury and enhance angiogenesis in rats. Am J Transl Res 8(10):4289–4299

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ju GQ, Cheng J, Zhong L, Wu S, Zou XY, Zhang GY et al (2015) Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction. PLoS ONE 10(3):e0121534

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zou X, Zhang G, Cheng Z, Yin D, Du T, Ju G et al (2014) Microvesicles derived from human Wharton’s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1. Stem Cell Res Ther 5(2):40

    Article  PubMed  PubMed Central  Google Scholar 

  23. Aghajani Nargesi A, Lerman LO, Eirin A (2017) Mesenchymal stem cell-derived extracellular vesicles for kidney repair: current status and looming challenges. Stem Cell Res Ther 8(1):273

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bruno S, Tapparo M, Collino F, Chiabotto G, Deregibus MC, Soares Lindoso R et al (2017) Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng Part A 23(21–22):1262–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y et al (2013) Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 4(2):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ezquer F, Ezquer M, Simon V, Pardo F, Yañez A, Carpio D et al (2009) Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biol Blood Marrow Trans 15(11):1354–1365

    Article  CAS  Google Scholar 

  27. Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H et al (2012) Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med 30(1):85–92

    CAS  PubMed  Google Scholar 

  28. Abdel Aziz MT, Wassef MA, Ahmed HH, Rashed L, Mahfouz S, Aly MI et al (2014) The role of bone marrow derived-mesenchymal stem cells in attenuation of kidney function in rats with diabetic nephropathy. Diabetol Metab Syndr 6(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  29. Burst VR, Gillis M, Pütsch F, Herzog R, Fischer JH, Heid P et al (2010) Poor cell survival limits the beneficial impact of mesenchymal stem cell transplantation on acute kidney injury. Nephron Exp Nephrol 114(3):e107–e116

    Article  PubMed  Google Scholar 

  30. Tian H, Lu Y, Shah SP, Wang Q, Hong S (2012) 14S,21R-dihydroxy-docosahexaenoic acid treatment enhances mesenchymal stem cell amelioration of renal ischemia/reperfusion injury. Stem Cells Dev 21(7):1187–1199

    Article  CAS  PubMed  Google Scholar 

  31. Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S (2012) Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med 10:243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Altun B, Yilmaz R, Aki T, Akoglu H, Zeybek D, Piskinpasa S et al (2012) Use of mesenchymal stem cells and darbepoetin improve ischemia-induced acute kidney injury outcomes. Am J Nephrol 35(6):531–539

    Article  CAS  PubMed  Google Scholar 

  33. Cai J, Yu X, Zhang B, Zhang H, Fang Y, Liu S et al (2014) Atorvastatin improves survival of implanted stem cells in a rat model of renal ischemia-reperfusion injury. Am J Nephrol 39(6):466–475

    Article  CAS  PubMed  Google Scholar 

  34. Mias C, Trouche E, Seguelas MH, Calcagno F, Dignat-George F, Sabatier F et al (2008) Ex vivo pretreatment with melatonin improves survival, proangiogenic/mitogenic activity, and efficiency of mesenchymal stem cells injected into ischemic kidney. Stem Cells 26(7):1749–1757

    Article  CAS  PubMed  Google Scholar 

  35. George SK, Abolbashari M, Jackson JD, Aboushwareb T, Atala A, Yoo JJ (2016) Potential use of autologous renal cells from diseased kidneys for the treatment of renal failure. PLoS ONE 11(10):e0164997

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stenvinkel P, Wadstrom J, Bertram T, Detwiler R, Gerber D, Brismar TB et al (2016) Implantation of autologous selected renal cells in diabetic chronic kidney disease stages 3 and 4 clinical experience of a “first in human” study. Kidney Int Rep 1(3):105–113

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stavas J, Filler G, Jain D, Ludlow J, Basu J, Payne R et al (2022) Renal autologous cell therapy to stabilize function in diabetes-related chronic kidney disease: corroboration of mechanistic action with cell marker analysis. Kidney Int Rep 7(7):1619–1629

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hickson LJ, Eirin A, Lerman LO (2016) Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 89(4):767–778

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All figures are crafted at biorender.com

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Contributed substantially to the conception or design of the work: Mehmet Kanbay, Sidar Copur. Drafted the manuscript: Sidar Copur, Furkan Yvuz. Revision of the manuscript for important intellectual content: Mehmet Kanbay, Adrian Covic

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

Conflict of interest

All the authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Copur, S., Yavuz, F., Covic, A. et al. A review on renal autologous cell transplantation: an investigational approach towards chronic kidney disease. Int Urol Nephrol 55, 2539–2544 (2023). https://doi.org/10.1007/s11255-023-03574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03574-5

Keywords

Navigation