Skip to main content
Log in

Evaluation of the effect and predictive role of vitamin D and vitamin D receptor expression in CD4 + , CD8 + , CD14 + , CD56 + cells on the development of chronic rejection and graft functions in kidney transplant patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

It is known that vitamin D has positive effects on graft functions (reduce fibrosis, suppress excessive inflammatory response, improve graft functions). In our study, it was aimed to evaluate the effects and predictive roles of vitamin D, the expression of vitamin D receptor (VDR) in lymphocytes, monocytes, natural killer cells on chronic rejection and graft functions in kidney transplant patients.

Methods

Seventy one people were included in the study and analyses were made by dividing them into 3 groups. Group 1: Healthy control (n = 29), Group 2: Kidney transplant patients with stable kidney function (n = 17), and Group 3: Kidney transplant patients with chronic rejection diagnosis (n = 25). Serum 25-hydroxycholecalciferol, 1.25 dihydroxycholecalciferol levels and VDR percentages in CD4 + , CD8 + , CD14 + , CD56 + cells were measured in 3 groups. ROC analyses and logistic regression models were performed to predict rejection and long-term graft functions.

Results

The percentage of VDR expression in CD4 + lymphocytes (p < 0.001) and CD14( +) monocytes (p < 0.001), 25-hydroxycholecalciferol and 1.25 dihydroxycholecalciferol levels were lower in group 3 was detected. In ROC analyses and logistic regression models, VDR expression in CD4( +)T lymphocytes was shown to have a statistically significant value in the development of chronic rejection (Odds ratio 0.86: 0.76–0.92; p = 0.001/AUC = 0.941, p < 0.001) and prediction of 5th-year graft functions (Odds ratio 0.93: 0.88–0.98; p = 0.017/AUC = 0.745, p = 0.007).

Conclusion

In our study, it was shown that low vitamin D and VDR expression is associated with poor outcome and VDR expression in CD4( +)T lymphocytes is predictive in terms of graft function and rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parker GB, Brotchie H, Graham RK (2017) Vitamin D and depression. J Affect Disord 208:56–61. https://doi.org/10.1016/j.jad.2016.08.082

    Article  CAS  PubMed  Google Scholar 

  2. Vuolo L, Di Somma C, Faggiano A, Colao A (2012) Vitamin D and cancer. Front Endocrinol (Lausanne) 3:58. https://doi.org/10.3389/fendo.2012.00058

    Article  CAS  PubMed  Google Scholar 

  3. Smith EM, Tangpricha V (2015) Vitamin D and anemia: insights into an emerging association. Curr Opin Endocrinol Diabetes Obes 22:432–438. https://doi.org/10.1097/MED.0000000000000199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Marshall Brinkley D, Ali OM, Zalawadiya SK, Wang TJ (2017) Vitamin D and heart failure. Curr Heart Fail Rep 14:410–420. https://doi.org/10.1007/s11897-017-0355-7

    Article  CAS  PubMed  Google Scholar 

  5. Misiorowski W (2020) Vitamin D, infections and immunity. Wiedza Medyczna 2:7–16. https://doi.org/10.36553/wm.55

    Article  Google Scholar 

  6. Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ (2001) Nuclear receptors and lipid physiology: opening the X-files. Science 294:1866–1870. https://doi.org/10.1126/science.294.5548.1866

    Article  CAS  PubMed  Google Scholar 

  7. Provvedini D, Tsoukas C, Deftos L, Manolagas S (1983) 1,25-dihydroxyvitamin D3 receptors in human leukocytes. Science 221:1181–1183. https://doi.org/10.1126/science.6310748

    Article  CAS  PubMed  Google Scholar 

  8. Veldman CM, Cantorna MT, DeLuca HF (2000) Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch Biochem Biophys 374:334–338. https://doi.org/10.1006/abbi.1999.1605

    Article  CAS  PubMed  Google Scholar 

  9. Penna G, Amuchastegui S, Giarratana N, Daniel KC, Vulcano M, Sozzani S, Adorini L (2017) 1,25-Dihydroxyvitamin D 3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J Immunol 178:145–153. https://doi.org/10.4049/jimmunol.178.1.145

    Article  Google Scholar 

  10. Penna G, Amuchastegui S, Laverny G, Adorini L (2007) Vitamin D receptor agonists in the treatment of autoimmune diseases: selective targeting of myeloid but not plasmacytoid dendritic cells. J Bone Miner Res 22(2):69–73. https://doi.org/10.1359/jbmr.07s217

    Article  Google Scholar 

  11. Ferreira GB, Overbergh L, Verstuyf A, Mathieu C (2013) 1α,25-Dihydroxyvitamin D3 and its analogs as modulators of human dendritic cells: a comparison dose-titration study. J Steroid Biochem Mol Biol 136:160–165. https://doi.org/10.1016/j.jsbmb.2012.10.009

    Article  CAS  PubMed  Google Scholar 

  12. Piemonti L, Monti P, Sironi M, Fraticelli P, Leone BE, Dal Cin E, Allavena P, Di Carlo V (2000) Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 164:4443–4451. https://doi.org/10.4049/jimmunol.164.9.4443

    Article  CAS  PubMed  Google Scholar 

  13. Adorini L (2003) Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann N Y Acad Sci 987:258–261. https://doi.org/10.1111/j.1749-6632.2003.tb06057.x

    Article  CAS  PubMed  Google Scholar 

  14. Bartels LE, Hvas CL, Agnholt J, Dahlerup JF, Agger R (2010) Human dendritic cell antigen presentation and chemotaxis are inhibited by intrinsic 25-hydroxy vitamin D activation. Int Immunopharmacol 10:922–928. https://doi.org/10.1016/j.intimp.2010.05.003

    Article  CAS  PubMed  Google Scholar 

  15. Rook GA, Steele J, Fraher L, Barker S, Karmali R, O’Riordan J, Stanford J (1986) Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology 57:159–163

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Sochorová K, Budinský V, Rozková D, Tobiasová Z, Dusilová-Sulková S, Spísek R, Bartůnková J (2009) Paricalcitol (19-nor-1,25-dihydroxyvitamin D2) and calcitriol (1,25-dihydroxyvitamin D3) exert potent immunomodulatory effects on dendritic cells and inhibit induction of antigen-specific T cells. Clin Immunol 133:69–77. https://doi.org/10.1016/j.clim.2009.06.011

    Article  CAS  PubMed  Google Scholar 

  17. Van Halteren AGS, Tysma OM, van Etten E, Mathieu C, Roep BO (2004) 1alpha,25-dihydroxyvitamin D3 or analogue treated dendritic cells modulate human autoreactive T cells via the selective induction of apoptosis. J Autoimmun 23:233–239. https://doi.org/10.1016/j.jaut.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  18. Cantorna M, Snyder L, Lin Y-D, Yang L (2015) Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 7:3011–3021. https://doi.org/10.3390/nu7043011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Hullett DA, Laeseke PF, Malin G, Nessel R, Sollinger HW, Becker BN (2005) Prevention of chronic allograft nephropathy with vitamin D. Transpl Int 18:1175–1186. https://doi.org/10.1111/j.1432-2277.2005.00187.x

    Article  PubMed  Google Scholar 

  20. Aschenbrenner JK, Sollinger HW, Becker BN, Hullett DA (2001) 1,25-(OH(2))D(3) alters the transforming growth factor beta signaling pathway in renal tissue. J Surg Res 100:171–175. https://doi.org/10.1006/jsre.2001.6221

    Article  CAS  PubMed  Google Scholar 

  21. O’Herrin JK, Hullett DA, Heisey DM, Sollinger HW, Becker BN (2002) A retrospective evaluation of 1,25-dihydroxyvitamin D(3) and Its potential effects on renal allograft function. Am J Nephrol 22:515–520. https://doi.org/10.1159/000065289

    Article  PubMed  Google Scholar 

  22. Falkiewicz K, Boratynska M, Speichert-Bidzińska B, Magott-Procelewska M, Biecek P, Patrzalek D, Klinger M (2009) 1,25-dihydroxyvitamin D deficiency predicts poorer outcome after renal transplantation. Transplant Proc 41:3002–3005. https://doi.org/10.1016/j.transproceed

    Article  CAS  PubMed  Google Scholar 

  23. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  24. Bienaimé F, Girard D, Anglicheau D, Canaud G, Souberbielle JC, Kreis H, Noël LH, Friedlander G, Elie C, Legendre C, Prié D (2013) Vitamin D status and outcomes after renal transplantation. J Am Soc Nephrol 24:831–841. https://doi.org/10.1681/ASN.2012060614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Keyzer CA, Riphagen IJ, Joosten MM, Navis G, Kobold ACM, Kema IP, Bakker SJL, Borst MHd, NIGRAM consortium (2015) Associations of 25(OH) and 1,25(OH)2 vitamin D with long-term outcomes in stable renal transplant recipients. J Clin Endocrinol Metab 100:81–89. https://doi.org/10.1210/jc.2014-3012

    Article  CAS  PubMed  Google Scholar 

  26. Erdem BK, Yilmaz VT, Suleymanlar G, Ozcan F, Ataman AB, Akbas H (2017) The relationship between vitamin D status and graft function in renal transplant recipients. Int J Med Biochem 1:1–5. https://doi.org/10.14744/ijmb.2017.98608

    Article  Google Scholar 

  27. Ahmadpoor P, Ilkhanizadeh B, Ghasemmahdi L, Makhdoomi K, Ghafari A (2009) Effect of active vitamin D on expression of co-stimulatory molecules and HLA-DR in renal transplant recipients. Exp Clin Transplant. 7(2):99–103. http://www.ncbi.nlm.nih.gov/pubmed/19715513

  28. Penna G, Adorini L (2000) 1 Alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411. https://doi.org/10.4049/jimmunol.164.5.2405

    Article  CAS  PubMed  Google Scholar 

  29. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R (2001) Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci 98:6800–6805. https://doi.org/10.1073/pnas.121172198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

Akdeniz University Scientific Research Projects Management Unit Project number: TTU-2017-2722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vural Taner Yilmaz.

Ethics declarations

Conflict of interest

There is not any conflict of interest between authors.

Ethical approval

The study was approved by the Akdeniz University Clinical Research Ethics Committee (KAEK decision number: 248, Date: 26.04.2017).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vural, T., Yilmaz, V.T., Koksoy, S. et al. Evaluation of the effect and predictive role of vitamin D and vitamin D receptor expression in CD4 + , CD8 + , CD14 + , CD56 + cells on the development of chronic rejection and graft functions in kidney transplant patients. Int Urol Nephrol 55, 2589–2598 (2023). https://doi.org/10.1007/s11255-023-03550-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03550-z

Keywords

Navigation