Skip to main content

Advertisement

Log in

Alterations in the balance of sex hormones may affect rat prostatic inflammation and fibrosis, and osteopontin might be involved in this process

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objective

This study aimed to investigate the effects of sex hormone imbalance on rat prostatic inflammation and fibrosis and identify the key molecules involved.

Methods

Castrated Sprague–Dawley (SD) rats were treated with a constant dose of oestradiol (E2) and different doses of dihydrotestosterone (DHT) to achieve different oestrogen/androgen ratios. After 8 weeks, serum E2 and DHT concentrations, relative seminal vesicle weights, histopathological changes and inflammation were measured, collagen fiber content and oestrogen receptor (ER) and androgen receptor (AR) expression were detected, mRNA sequencing and bioinformatics analysis were performed to identify differentially expressed genes (DEGs).

Results

The severity of inflammation in the rat dorsolateral prostate (DLP) was higher, collagen fibre content and ER expression in the rat DLP and prostatic urethra were increased and AR expression in the rat DLP was decreased in the 1:1 E2/DHT-treated group than that in the 1:10 E2/DHT-treated group. RNA-seq analysis identified 487 DEGs, and striking increases in the expression of mRNAs encoding collagen, collagen synthesis and degradation enzymes, growth factors and binding proteins, cytokines and chemokines, and cell-surface molecules were confirmed in the 1:1 E2/DHT-treated group compared to the 1:10 E2/DHT-treated group. mRNA expression of secreted phosphoprotein 1 (Spp1) and protein expression of osteopontin (OPN, encoded by Spp1) were increased in the 1:1 E2/DHT-treated group compared to the 1:10 E2/DHT-treated group, and Spp1 expression correlated positively with Mmp7, Cxcl6 and Igfn1 expression.

Conclusions

The imbalance in the oestrogen/androgen ratio may affect rat prostatic inflammation and fibrosis, and OPN might be involved in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Abrams P, Cardozo L, Fall M et al (2003) The standardisation of terminology in lower urinary tract function: Report from the standardisation sub-committee of the International Continence Society. Urology 61(1):37–49

    Article  PubMed  Google Scholar 

  2. Curtis Nickel J, Roehrborn CG, O’Leary MP et al (2008) The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur Urol 54(6):1379–1384

    Article  PubMed  Google Scholar 

  3. Ma J, Gharaee-Kermani M, Kunju L et al (2012) Prostatic fibrosis is associated with lower urinary tract symptoms. J Urol 188(4):1375–1381

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez-Nieves JA, Macoska JA (2013) Prostatic fibrosis, lower urinary tract symptoms, and BPH. Nat Rev Urol 10(9):546–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vermeulen A, Kaufman JM, Goemaere S et al (2002) Estradiol in elderly men. Aging Male 5(2):98–102

    Article  CAS  PubMed  Google Scholar 

  6. Baulieu E-E (2002) Androgens and aging men. Mol Cell Endocrinol 198(1–2):41–49

    Article  CAS  PubMed  Google Scholar 

  7. Kaufman JM, Vermeulen A (2005) The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr Rev 26(6):833–876

    Article  CAS  PubMed  Google Scholar 

  8. Cao Y, Tian Ye, Zhang H et al (2022) Imbalance in the estrogen/androgen ratio may affect prostate fibrosis through the TGF-β/Smad signaling pathway. Int Urol Nephrol 54(3):499–508

    Article  CAS  PubMed  Google Scholar 

  9. Leung T-M, Wang X, Kitamura N et al (2013) Osteopontin delays resolution of liver fibrosis. Lab Invest 93(10):1082–1089

    Article  CAS  PubMed  Google Scholar 

  10. Mori R, Shaw TJ, Martin P (2008) Molecular mechanisms linking wound inflammation and fibrosis: knockdown of osteopontin leads to rapid repair and reduced scarring. J Exp Med 205(1):43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pardo A, Gibson K, Cisneros J et al (2005) Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med 2(9):e251

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yatkin E, Bernoulli J, Talvitie E-M et al (2009) Inflammation and epithelial alterations in rat prostate: impact of the androgen to oestrogen ratio. Int J Androl 32(4):399–410

    Article  CAS  PubMed  Google Scholar 

  13. Naslund MJ, Strandberg JD, Coffey DS (1988) The role of androgens and estrogens in the pathogenesis of experimental nonbacterial prostatitis. J Urol 140(5):1049–1053

    Article  CAS  PubMed  Google Scholar 

  14. Bernoulli J, Yatkin E, Konkol Y et al (2008) Prostatic inflammation and obstructive voiding in the adult Noble rat: impact of the testosterone to estradiol ratio in serum. Prostate 68(12):1296–1306

    Article  CAS  PubMed  Google Scholar 

  15. Asiedu B, Anang Y, Nyarko A et al (2017) The role of sex steroid hormones in benign prostatic hyperplasia. Aging Male 20(1):17–22

    Article  CAS  PubMed  Google Scholar 

  16. Chavalmane AK, Comeglio P, Morelli A et al (2010) Sex steroid receptors in male human bladder: expression and biological function. J Sex Med 7(8):2698–2713

    Article  CAS  PubMed  Google Scholar 

  17. Mahapokai W, van den Ingh TS, van Mil F et al (2001) Immune response in hormonally-induced prostatic hyperplasia in the dog. Vet Immunol mmunopathol 78(3–4):297–303

    Article  CAS  Google Scholar 

  18. Bernoulli J, Yatkin E, Talvitie EM et al (2007) Urodynamic changes in a noble rat model for nonbacterial prostatic inflammation. Prostate 67(8):888–899

    Article  CAS  PubMed  Google Scholar 

  19. Tangbanluekal L, Robinette CL (1993) Prolactin mediates estradiol induced inflammation in the lateral prostate of Wistar rats. Endocrinology 132(6):2407–2416

    Article  CAS  PubMed  Google Scholar 

  20. Enatsu N, Chiba K, Sumii K et al (2017) Dutasteride-mediated morphological changes in the genitourinary tract associated with altered expression patterns of the androgen and estrogen receptors in male rats. Andrology 5(2):347–353

    Article  CAS  PubMed  Google Scholar 

  21. Katoh M (2018) Multi-layered prevention and treatment of chronic inflammation, organ fibrosis and cancer associated with canonical WNT/β-catenin signaling activation (Review). Int J Mol Med 42(2):713–725

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Icer MA, Gezmen-Karadag M (2018) The multiple functions and mechanisms of osteopontin. Clin Biochem 59:17–24

    Article  CAS  PubMed  Google Scholar 

  23. Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19(5–6):333–345

    Article  CAS  PubMed  Google Scholar 

  24. Weber Georg F, Zawaideh Samer, Hikita Sherry et al (2002) Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol 72(4):752–761

    Article  CAS  PubMed  Google Scholar 

  25. Ashkar S, Weber GF, Panoutsakopoulou V et al (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287(5454):860–864

    Article  CAS  PubMed  Google Scholar 

  26. Abdelaziz Mohamed I, Gadeau AP, Hasan A et al (2019) Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis. Cells 8(12):1558

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hatipoglu OF, Uctepe E, Opoku G et al (2021) Osteopontin silencing attenuates bleomycin-induced murine pulmonary fibrosis by regulating epithelial-mesenchymal transition. Biomed Pharmacother 139:111633

    Article  CAS  PubMed  Google Scholar 

  28. Berman JS, Serlin D, Li X et al (2004) Altered bleomycin-induced lung fibrosis in osteopontin-deficient mice. Am J Physiol Lung Cell Mol Physiol 286(6):L1311-1318

    Article  CAS  PubMed  Google Scholar 

  29. Popovics P, Awadallah WN, Kohrt SE et al (2020) Prostatic osteopontin expression is associated with symptomatic benign prostatic hyperplasia. Prostate 80(10):731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Popovics P, Jain A, Skalitzky KO et al (2021) Osteopontin Deficiency Ameliorates Prostatic Fibrosis and Inflammation. Int J Mol Sci 22(22):12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Apparao KB, Murray MJ, Fritz MA et al (2001) Osteopontin and its receptor alphavbeta(3) integrin are coexpressed in the human endometrium during the menstrual cycle but regulated differentially. J Clin Endocrinol Metab 86(10):4991–5000

    CAS  PubMed  Google Scholar 

  32. Craig AM, Denhardt DT (1991) The murine gene encoding secreted phosphoprotein 1 (osteopontin): promoter structure, activity, and induction in vivo by estrogen and progesterone. Gene 100:163–171

    Article  CAS  PubMed  Google Scholar 

  33. Omigbodun A, Ziolkiewicz P, Tessler C et al (1997) Progesterone regulates osteopontin expression in human trophoblasts: a model of paracrine control in the placenta? Endocrinology 138(10):4308–4315

    Article  CAS  PubMed  Google Scholar 

  34. DuQuesnay R, Wright C, Aziz AA et al (2009) Infertile women with isolated polycystic ovaries are deficient in endometrial expression of osteopontin but not alphavbeta3 integrin during the implantation window. Fertil Steril 91(2):489–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study is supported financially by a grant from the National Natural Science Foundation of China (No. 81860141 and 82160149), Guizhou Provincial Science and Technology Foundation (No. [2021]378 and No.gzwkj2013-1-105, Guizhou University introduces talents Foundation (No.[2021]8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Cao.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 812 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Zhang, H., Tang, XH. et al. Alterations in the balance of sex hormones may affect rat prostatic inflammation and fibrosis, and osteopontin might be involved in this process. Int Urol Nephrol 55, 2355–2365 (2023). https://doi.org/10.1007/s11255-023-03544-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03544-x

Keywords

Navigation