Skip to main content

Advertisement

Log in

Renal arterial resistive index, monocyte chemotactic protein 1 and neutrophil gelatinase-associated lipocalin, for predicting acute kidney injury in critically ill cancer patients

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the renal arterial resistive index (RRI), urine monocyte chemotactic protein 1 (uMCP-1), and urine neutrophil gelatinase-associated lipocalin (uNGAL) to predict acute kidney injury (AKI) in critically ill cancer patients.

Methods

In this prospective study, we included patients without AKI. We compared the area under the curve (AUC) of RRI, uMCP-1, and uNGAL to predict any stage of AKI and stage-3 AKI with the DeLong method, and we established cutoff points with the Youden index.

Results

We included 64 patients, and 43 (67.2%) developed AKI. The AUC to predict AKI were: 0.714 (95% CI 0.587–0.820) for the RRI, 0.656 (95% CI 0.526–0.770) for uMCP-1, and 0.677 (95% CI 0.549–0.789) for uNGAL. The AUC to predict stage-3 AKI were: 0.740 (95% CI 0.615–0.842) for the RRI, 0.757 (95% CI 0.633–0.855) for uMCP-1, and 0.817 (95% CI 0.701–0.903) for uNGAL, without statistical differences among them. For stage 3 AKI prediction, the sensitivity and specificity were: 56.3% and 87.5% for a RRI > 0.705; 70% and 79.2% for an uMCP-1 > 2169 ng/mL; and 87.5% and 70.8% for a uNGAL > 200 ng/mL. The RRI was significantly correlated to age (r = 0.280), estimated glomerular filtration rate (r = − 0.259), mean arterial pressure (r = − 0.357), and serum lactate (r = 0.276).

Conclusion

The RRI, uMCP-1, and uNGAL have a similar ability to predict AKI. The RRI is more specific, while urine biomarkers are more sensitive to predict stage 3 AKI. The RRI correlates with hemodynamic variables. The novel uMCP-1 could be a useful biomarker that needs to be extensively studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kemlin D, Biard L, Kerhuel L et al (2018) Acute kidney injury in critically ill patients with solid tumours. Nephrol Dial Transplant 33:1997–2005. https://doi.org/10.1093/ndt/gfy051

    Article  CAS  PubMed  Google Scholar 

  2. Darmon M, Vincent F, Canet E et al (2015) Acute kidney injury in critically ill patients with haematological malignancies: results of a multicentre cohort study from the Groupe de Recherche en Réanimation Respiratoire en Onco-Hematologie. Nephrol Dial Transplant 30:2006–2013. https://doi.org/10.1093/ndt/gfv372

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rosner MH, Perazella MA (2017) Acute kidney injury in patients with cancer. N Engl J Med 376:1770–1781. https://doi.org/10.1056/NEJMra1613984

    Article  CAS  PubMed  Google Scholar 

  4. Küllmar M, Meersch M (2019) Perioperative acute kidney injury. Anaesthesist 68:194–201. https://doi.org/10.1097/ALN.0000000000002968b

    Article  PubMed  Google Scholar 

  5. Kellum JA, Lameire H, Aspelin P et al (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2(1):1–138. https://doi.org/10.1038/kisup.2012.1

    Article  Google Scholar 

  6. Viazzi F, Leoncini G, Derchi LE, Pontremoli R (2014) Ultrasound Doppler renal resistive index: a useful tool for the management of the hypertensive patient. J Hypertens 32:149–153. https://doi.org/10.1097/HJH.0b013e328365b29c

    Article  CAS  PubMed  Google Scholar 

  7. Darmon M, Schortgen F, Vargas F et al (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37:68–76. https://doi.org/10.1007/s00134-010-2050-y

    Article  PubMed  Google Scholar 

  8. Boddi M, Bonizzoli M, Chiostri M et al (2016) Renal Resistive Index and mortality in critical patients with acute kidney injury. Eur J Clin Investig 46:242–251. https://doi.org/10.1111/eci.12590

    Article  Google Scholar 

  9. Schnell D, Deruddre S, Harrois A et al (2012) Renal resistive index better predicts the occurrence of acute kidney injury than cystatin C. Shock 38:592–597. https://doi.org/10.1097/SHK.0b013e318271a39c

    Article  CAS  PubMed  Google Scholar 

  10. Darmon M, Bourmaud A, Reynaud M et al (2018) Performance of Doppler-based resistive index and semi-quantitative renal perfusion in predicting persistent AKI: results of a prospective multicenter study. Intensive Care Med 44:1904–1913. https://doi.org/10.1007/s00134-018-5386-3

    Article  PubMed  Google Scholar 

  11. Lerolle N, Guérot E, Faisy C, Bornstain C, Diehl JL, Fagon JY (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32:1553–1559. https://doi.org/10.1007/s00134-006-0360-x

    Article  PubMed  Google Scholar 

  12. Haitsma Mulier JLG, Rozemeijer S, Röttgering JG et al (2018) Renal resistive index as an early predictor and discriminator of acute kidney injury in critically ill patients; a prospective observational cohort study. PLoS ONE 13:e0197967. https://doi.org/10.1371/journal.pone.0197967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhi HJ, Zhao J, Nie S et al (2019) Prediction of acute kidney injury: the ratio of renal resistive index to semiquantitative power Doppler ultrasound score-a better predictor? A prospective observational study. Medicine (Baltimore) 98:e15465. https://doi.org/10.1097/MD.0000000000015465

    Article  PubMed  Google Scholar 

  14. Munshi R, Johnson A, Siew ED, Ikizler TA, Ware LB, Wurfel MM et al (2011) MCP-1 gene activation marks acute kidney injury. J Am Soc Nephrol 22:165–175. https://doi.org/10.1681/ASN.2010060641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moledina DG, Isguven S, McArthur E et al (2017) Plasma monocyte chemotactic protein-1 is associated with acute kidney injury and death after cardiac operations. Ann Thorac Surg 104:613–620. https://doi.org/10.1016/j.athoracsur.2016.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jang HR, Kim M, Hong S et al (2021) Early postoperative urinary MCP-1 as a potential biomarker predicting acute rejection in living donor kidney transplantation: a prospective cohort study. Sci Rep 11:1–14. https://doi.org/10.1038/s41598-021-98135-0

    Article  CAS  Google Scholar 

  17. Oken MM, Creech RH, Tormey DC et al (1982) Toxicity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol 5:649–655 (PMID:7165009)

    Article  CAS  PubMed  Google Scholar 

  18. Singer M, Deutschman CS, Seymour C et al (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315:801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European Society of Intensive Care Medicine. Intensive Care Med 22:707–710. https://doi.org/10.1007/BF01709751

    Article  CAS  PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Orso D, Paoli I, Piani T, Cilenti FL, Cristiani L, Guglielmo N (2020) Accuracy of ultrasonographic measurements of inferior vena cava to determine fluid responsiveness: a systematic review and meta-analysis. J Intensive Care Med 35:354–363. https://doi.org/10.1177/0885066617752308

    Article  PubMed  Google Scholar 

  22. Zhang Z, Xu X, Ye S, Xu L (2014) Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med Biol 40:845–853. https://doi.org/10.1016/j.ultrasmedbio.2013.12.010

    Article  PubMed  Google Scholar 

  23. Biais M, de Courson H, Lanchon R et al (2017) Mini-fluid Challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology 127:450–456. https://doi.org/10.1097/ALN.0000000000001753

    Article  CAS  PubMed  Google Scholar 

  24. Vincent JL, Cecconi M, De Backer D (2020) The fluid challenge. Crit Care 24:703. https://doi.org/10.1186/s13054-020-03443-y

    Article  PubMed  PubMed Central  Google Scholar 

  25. Blanco P, Aguiar FM, Blaivas M (2015) Rapid ultrasound in shock (RUSH) velocity-time integral: a proposal to expand the RUSH protocol. J Ultrasound Med 34(9):1691–1700. https://doi.org/10.7863/ultra.15.14.08059

    Article  PubMed  Google Scholar 

  26. Córdova-Sánchez BM, Herrera-Gómez Á, Ñamendys-Silva SA (2016) Acute kidney injury classified by serum creatinine and urine output in critically ill cancer patients. Biomed Res Int 2016:6805169. https://doi.org/10.1155/2016/6805169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hajian-Tilaki K (2014) Sample size estimation in diagnostic test studies of biomedical informatics. J Biomed Inform 48:193–204. https://doi.org/10.1016/j.jbi.2014.02.013

    Article  PubMed  Google Scholar 

  28. Regolisti G, Maggiore U, Cademartiri C et al (2017) Renal resistive index by transesophageal and transparietal echo-Doppler imaging for the prediction of acute kidney injury in patients undergoing major heart surgery. J Nephrol 30:243–253. https://doi.org/10.1007/s40620-016-0289-2

    Article  PubMed  Google Scholar 

  29. Hanamura K, Tojo A, Kinugasa S, Asaba K, Fujita T (2012) The resistive index is a marker of renal function, pathology, prognosis, and responsiveness to steroid therapy in chronic kidney disease patients. Int J Nephrol 2012:139565. https://doi.org/10.1155/2012/139565

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deruddre S, Cheisson G, Mazoit J, Vicaut E, Benhamou D, Duranteau J (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med. https://doi.org/10.1007/s00134-007-0665-4

    Article  PubMed  Google Scholar 

  31. Platt JF, Rubin JM, Ellis JH (1991) Acute renal failure: possible role of duplex Doppler US in distinction between acute prerenal failure and acute tubular necrosis. Radiology 179:419–423. https://doi.org/10.1148/radiology.179.2.2014284

    Article  CAS  PubMed  Google Scholar 

  32. Schnell D, Camous L, Guyomarc HS et al (2013) Renal perfusion assessment by renal doppler during fluid challenge in sepsis. Crit Care Med 41:1214–1220. https://doi.org/10.1097/CCM.0b013e31827c0a36

    Article  PubMed  Google Scholar 

  33. Lahmer T, Rasch S, Schnappauf C, Schmid RM, Huber W (2016) Influence of volume administration on Doppler-based renal resistive index, renal hemodynamics and renal function in medical intensive care unit patients with septic-induced acute kidney injury: a pilot study. Int Urol Nephrol 48:1327–1334. https://doi.org/10.1007/s11255-016-1312-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was performed in fulfillment of the Doctorate Program in Medical, Dental, and Health Sciences of the Universidad Nacional Autónoma de México (UNAM). Doctor Bertha M. Córdova-Sánchez is a Ph.D. Candidate from this program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Eduardo Morales-Buenrostro.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests. The authors declare that they have no sources of funding to declare.

Ethical approval

The protocol was approved by the local Institutional Review Board (Record CEI/1283/18). Before inclusion, we obtained informed consent from the responsible family members, since the patients were under sedation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova-Sánchez, B.M., Ñamendys-Silva, S.A., Pacheco-Bravo, I. et al. Renal arterial resistive index, monocyte chemotactic protein 1 and neutrophil gelatinase-associated lipocalin, for predicting acute kidney injury in critically ill cancer patients. Int Urol Nephrol 55, 1799–1809 (2023). https://doi.org/10.1007/s11255-023-03504-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-023-03504-5

Keywords

Navigation