Skip to main content

Advertisement

Log in

Sarcopenia and cardiovascular disease in patients with and without kidney disease: what do we know?

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) incidence is high in patients with chronic kidney disease (CKD) and is the most frequent cause of mortality in this population. Advanced age, hypertension, uremic toxins, endothelial dysfunction, atherosclerosis, hyperhomocysteinemia, oxidative stress, and inflammation are among the leading causes of increased CVD in advanced stages of CKD. Although defined as a decrease in muscle strength associated with aging, sarcopenia is also prevalent in CKD patients. Sarcopenia causes physical disability, low quality of life, and mortality. Regular exercise and nutritional supplementation may slow the progression of sarcopenia. Recent studies have shown that sarcopenia increases the risk of CVD and mortality in people with or without kidney disease. This review discusses the relationship between sarcopenia and CVD in light of the current literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127(5 Suppl):990S-S991

    Article  CAS  PubMed  Google Scholar 

  2. Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31

    Article  PubMed  Google Scholar 

  3. Carvalho do Nascimento PR, Poitras S, Bilodeau M (2018) How do we define and measure sarcopenia? Protocol for a systematic review. Syst Rev 7(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  4. Castillo-Olea C, Garcia-Zapirain Soto B, Carballo Lozano C, Zuniga C (2019) Automatic classification of sarcopenia level in older adults: a case study at Tijuana General Hospital. Int J Environ Res Public Health 16(18):1

    Article  Google Scholar 

  5. Kim H, Hirano H, Edahiro A et al (2016) Sarcopenia: prevalence and associated factors based on different suggested definitions in community-dwelling older adults. Geriatr Gerontol Int 16(Suppl 1):110–122

    Article  PubMed  Google Scholar 

  6. Chatzipetrou V, Bégin MJ, Hars M, Trombetti A (2022) Sarcopenia in chronic kidney disease: a scoping review of prevalence, risk factors, association with outcomes, and treatment. Calcif Tissue Int 110(1):1–31

    Article  CAS  PubMed  Google Scholar 

  7. Bataille S, Chauveau P, Fouque D, Aparicio M, Koppe L (2021) Myostatin and muscle atrophy during chronic kidney disease. Nephrol Dial Transplant 36(11):1986–1993

    Article  CAS  PubMed  Google Scholar 

  8. Mattera MVN, Aucella F, Tegola LL, Testini V, De Guio F, Guglielmi G (2021) Prevalence and risk factors for sarcopenia in chronic kidney disease patients undergoing dialysis: a cross-sectional study. Turk J Nephrol 30:294–299

    Article  CAS  Google Scholar 

  9. Ribeiro HS, Neri SGR, Oliveira JS, Bennett PN, Viana JL, Lima RM (2022) Association between sarcopenia and clinical outcomes in chronic kidney disease patients: a systematic review and meta-analysis. Clin Nutr 41(5):1131-1140.10

    Article  PubMed  Google Scholar 

  10. Shu X, Lin T, Wang H, Zhao Y, Jiang T, Peng X, Yue J (2022) Diagnosis, prevalence, and mortality of sarcopenia in dialysis patients: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 13(1):145–158

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jankowski J, Floege J, Fliser D, Bohm M, Marx N (2021) Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143(11):1157–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Im IJ, Choi HJ, Jeong SM, Kim HJ, Son JS, Oh HJ (2017) The association between muscle mass deficits and arterial stiffness in middle-aged men. Nutr Metab Cardiovasc Dis 27(12):1130–1135

    Article  CAS  PubMed  Google Scholar 

  13. Curcio F, Testa G, Liguori I et al (2020) Sarcopenia and heart failure. Nutrients 12(1):1

    Article  Google Scholar 

  14. Coats AJ, Clark AL, Piepoli M, Volterrani M, Poole-Wilson PA (1994) Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J 72(2 Suppl):S36–S39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohara M, Kohara K, Tabara Y et al (2014) Sarcopenic obesity and arterial stiffness, pressure wave reflection and central pulse pressure: the J-SHIPP study. Int J Cardiol 174(1):214–217

    Article  PubMed  Google Scholar 

  16. Veijalainen A, Tompuri T, Haapala EA et al (2016) Associations of cardiorespiratory fitness, physical activity, and adiposity with arterial stiffness in children. Scand J Med Sci Sports 26(8):943–950

    Article  CAS  PubMed  Google Scholar 

  17. Lee D, Byun K, Hwang M-H, Lee S (2021) Augmentation index is inversely associated with skeletal muscle mass, muscle strength, and anaerobic power in young male adults: a preliminary study. Appl Sci 11(7):3146

    Article  CAS  Google Scholar 

  18. Tap L, Kirkham FA, Mattace-Raso F, Joly L, Rajkumar C, Benetos A (2020) Unraveling the links underlying arterial stiffness, bone demineralization, and muscle loss. Hypertension 76(3):629–639

    Article  CAS  PubMed  Google Scholar 

  19. Ochi M, Kohara K, Tabara Y et al (2010) Arterial stiffness is associated with low thigh muscle mass in middle-aged to elderly men. Atherosclerosis 212(1):327–332

    Article  CAS  PubMed  Google Scholar 

  20. Cleasby ME, Jamieson PM, Atherton PJ (2016) Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol 229(2):R67-81

    Article  CAS  PubMed  Google Scholar 

  21. Timmerman KL, Volpi E (2013) Endothelial function and the regulation of muscle protein anabolism in older adults. Nutr Metab Cardiovasc Dis 23(Suppl 1):S44-50

    Article  CAS  PubMed  Google Scholar 

  22. Xue Q, Wu J, Ren Y, Hu J, Yang K, Cao J (2021) Sarcopenia predicts adverse outcomes in an elderly population with coronary artery disease: a systematic review and meta-analysis. BMC Geriatr 21(1):493

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jun JE, Choi MS, Park SW et al (2021) Low skeletal muscle mass is associated with the presence, incidence, and progression of coronary artery calcification. Can J Cardiol 37(9):1480–1488

    Article  PubMed  Google Scholar 

  24. Xia MF, Chen LY, Wu L et al (2021) Sarcopenia, sarcopenic overweight/obesity and risk of cardiovascular disease and cardiac arrhythmia: a cross-sectional study. Clin Nutr 40(2):571–580

    Article  PubMed  Google Scholar 

  25. Bellanti F, Romano AD, Lo Buglio A et al (2018) Oxidative stress is increased in sarcopenia and associated with cardiovascular disease risk in sarcopenic obesity. Maturitas 109:6–12

    Article  CAS  PubMed  Google Scholar 

  26. Han E, Lee YH, Kim YD et al (2020) Nonalcoholic fatty liver disease and sarcopenia are independently associated with cardiovascular risk. Am J Gastroenterol 115(4):584–595

    Article  PubMed  Google Scholar 

  27. Ahisar Y, Thanassoulis G, Huang KN, Ohayon SM, Afilalo J (2021) Intersecting genetics of frailty and cardiovascular disease. J Nutr Health Aging 25(8):1023–1027

    Article  CAS  PubMed  Google Scholar 

  28. Uchida S, Kamiya K, Hamazaki N et al (2020) Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease. Heart Vessels 35(6):769–775

    Article  PubMed  Google Scholar 

  29. Han P, Chen X, Yu X et al (2020) The predictive value of sarcopenia and its individual criteria for cardiovascular and all-cause mortality in suburb-dwelling older Chinese. J Nutr Health Aging 24(7):765–771

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Wang W, Liu T, Zhang D (2017) Association of grip strength with risk of all-cause mortality, cardiovascular diseases, and cancer in community-dwelling populations: a meta-analysis of prospective cohort studies. J Am Med Dir Assoc 18(6):551 (e17–e35)

    Article  Google Scholar 

  31. Leong DP, Teo KK, Rangarajan S et al (2015) Prognostic value of grip strength: findings from the prospective urban rural epidemiology (PURE) study. Lancet 386(9990):266–273

    Article  PubMed  Google Scholar 

  32. Gubelmann C, Vollenweider P, Marques-Vidal P (2017) No association between grip strength and cardiovascular risk: the CoLaus population-based study. Int J Cardiol 236:478–482

    Article  PubMed  Google Scholar 

  33. Brown JC, Harhay MO, Harhay MN (2016) Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle 7(3):290–298

    Article  PubMed  Google Scholar 

  34. Pizzimenti M, Meyer A, Charles AL et al (2020) Sarcopenia and peripheral arterial disease: a systematic review. J Cachexia Sarcopenia Muscle 11(4):866–886

    Article  PubMed  PubMed Central  Google Scholar 

  35. Winter JE, MacInnis RJ, Wattanapenpaiboon N, Nowson CA (2014) BMI and all-cause mortality in older adults: a meta-analysis. Am J Clin Nutr 99(4):875–890

    Article  CAS  PubMed  Google Scholar 

  36. Atkins JL, Wannamathee SG (2020) Sarcopenic obesity in ageing: cardiovascular outcomes and mortality. Br J Nutr 124(10):1102–1113

    Article  CAS  PubMed  Google Scholar 

  37. Farmer RE, Mathur R, Schmidt AF et al (2019) Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: a cohort study and mendelian randomization analysis using the UK Biobank. J Am Heart Assoc 8(13):e011638

    Article  PubMed  PubMed Central  Google Scholar 

  38. Stephen WC, Janssen I (2009) Sarcopenic-obesity and cardiovascular disease risk in the elderly. J Nutr Health Aging 13(5):460–466

    Article  CAS  PubMed  Google Scholar 

  39. Cho HW, Chung W, Moon S, Ryu OH, Kim MK, Kang JG (2021) Effect of sarcopenia and body shape on cardiovascular disease according to obesity phenotypes. Diabetes Metab J 45(2):209–218

    Article  PubMed  Google Scholar 

  40. Bright R (1836) Cases and observations illustrative of renal disease accompanied with the secretion of albuminous urine. Guy’s Hosp Rep 10:338–340

    Google Scholar 

  41. Stevens P, O’donoghue D, De Lusignan S et al (2007) Chronic kidney disease management in the United Kingdom: NEOERICA project results. Kidney Int 72(1):92–9

    Article  CAS  PubMed  Google Scholar 

  42. Thompson S, James M, Wiebe N et al (2015) Cause of death in patients with reduced kidney function. J Am Soc Nephrol 26(10):2504–2511

    Article  PubMed  PubMed Central  Google Scholar 

  43. Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389(10075):1238–1252

    Article  PubMed  Google Scholar 

  44. Barbalho SM, Flato UAP, Tofano RJ et al (2020) Physical exercise and myokines: relationships with sarcopenia and cardiovascular complications. Int J Mol Sci 21(10):3607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hanatani S, Izumiya Y, Onoue Y et al (2018) Non-invasive testing for sarcopenia predicts future cardiovascular events in patients with chronic kidney disease. Int J Cardiol 268:216–221

    Article  PubMed  Google Scholar 

  46. Kosmadakis GC, Bevington A, Smith A et al (2010) Physical exercise in patients with severe kidney disease. Nephron Clin Pract 115(1):c7–c16

    Article  CAS  PubMed  Google Scholar 

  47. Morioka T (2020) Myostatin: the missing link between sarcopenia and cardiovascular disease in chronic kidney disease? J Atheroscler Thrombosis 27(10):1036–1038

    Article  Google Scholar 

  48. Verzola D, Barisione C, Picciotto D, Garibotto G, Koppe L (2019) Emerging role of myostatin and its inhibition in the setting of chronic kidney disease. Kidney Int 95(3):506–517

    Article  CAS  PubMed  Google Scholar 

  49. Esposito P, Verzola D, Porta EL et al (2020) Myostatin in the arterial wall of patients with end-stage renal disease. J Atheroscler Thrombosis 27(10):1039–1052

    Article  CAS  Google Scholar 

  50. Lee SM, Kim SE, Lee JY, Jeong HJ, Son YK, An WS (2019) Serum myostatin levels are associated with abdominal aortic calcification in dialysis patients. Kidney Res Clin Pract 38(4):481–489

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406

    Article  CAS  PubMed  Google Scholar 

  52. Honda H, Qureshi AR, Axelsson J et al (2007) Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am J Clin Nutr 86(3):633–638

    Article  CAS  PubMed  Google Scholar 

  53. Gomes TS, Santo Silva DdE, Junior GFX, de Farias Costa PR, Sena MHLG, Medeiros JMB (2021) Sarcopenia and mortality in patients with chronic non-dialytic renal disease: systematic review and meta-analysis. J Renal Nutr 2021:1

    Google Scholar 

  54. Beddhu S, Pappas LM, Ramkumar N, Samore M (2003) Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol 14(9):2366–2372

    Article  PubMed  Google Scholar 

  55. Kruse NT, Buzkova P, Barzilay JI et al (2020) Association of skeletal muscle mass, kidney disease and mortality in older men and women: the cardiovascular health study. Aging (Albany NY) 12(21):21023

    Article  CAS  PubMed  Google Scholar 

  56. Kato A, Ishida J, Endo Y et al (2011) Association of abdominal visceral adiposity and thigh sarcopenia with changes of arteriosclerosis in haemodialysis patients. Nephrol Dialysis Transpl 26(6):1967–1976

    Article  Google Scholar 

  57. Lai S, Muscaritoli M, Andreozzi P et al (2019) Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition 62:108–114

    Article  PubMed  Google Scholar 

  58. Arnarson A, Geirsdottir OG, Ramel A, Briem K, Jonsson P, Thorsdottir I (2013) Effects of whey proteins and carbohydrates on the efficacy of resistance training in elderly people: double blind, randomised controlled trial. Eur J Clin Nutr 67(8):821–826

    Article  CAS  PubMed  Google Scholar 

  59. Yoo S-Z, No M-H, Heo J-W et al (2018) Role of exercise in age-related sarcopenia. J Exerc Rehabil 14(4):551

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kopple JD, Wang H, Casaburi R et al (2007) Exercise in maintenance hemodialysis patients induces transcriptional changes in genes favoring anabolic muscle. J Am Soc Nephrol 18(11):2975–2986

    Article  CAS  PubMed  Google Scholar 

  61. Hiroshige K, Sonta T, Suda T, Kanegae K, Ohtani A (2001) Oral supplementation of branched-chain amino acid improves nutritional status in elderly patients on chronic haemodialysis. Nephrol Dial Transpl 16(9):1856–1862

    Article  CAS  Google Scholar 

  62. Eustace JA, Coresh J, Kutchey C et al (2000) Randomized double-blind trial of oral essential amino acids for dialysis-associated hypoalbuminemia. Kidney Int 57(6):2527–2538

    Article  CAS  PubMed  Google Scholar 

  63. Yano S, Nagai A, Isomura M et al (2015) Relationship between blood myostatin levels and kidney function: shimane CoHRE study. PLoS ONE 10(10):e0141035

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tamaki M, Miyashita K, Hagiwara A et al (2017) Ghrelin treatment improves physical decline in sarcopenia model mice through muscular enhancement and mitochondrial activation. Endocr J 64(Suppl.):S47–S51

    Article  PubMed  Google Scholar 

  65. Yu R, Chen Ja XuJ et al (2017) Suppression of muscle wasting by the plant-derived compound ursolic acid in a model of chronic kidney disease. J Cachexia Sarcopenia Muscle 8(2):327–341

    Article  PubMed  Google Scholar 

  66. Sabatino A, Cuppari L, Stenvinkel P, Lindholm B, Avesani CM (2020) Sarcopenia in chronic kidney disease: what have we learned so far? J Nephrol 2020:1–26

    Google Scholar 

  67. Barazzoni R, Zhu XX, DeBoer M, Datta R, Culler MD, Zanetti M, Guarnieri G, Marks DL (2010) Combined effects of ghrelin and higher food intake enhance skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rats with chronic kidney disease. Kidney Int 77(1):23–28. https://doi.org/10.1038/ki.2009.411. ISSN 0085-2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B (2011) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am J Clin Nutr 93(2):402–412. https://doi.org/10.3945/ajcn.110.005611

    Article  CAS  PubMed  Google Scholar 

  69. Bauer JM, Verlaan S, Bautmans I, Brandt K, Donini LM, Maggio M, McMurdo MET, Mets T, Seal C, Wijers SL, Ceda GP, De Vito G, Donders G, Drey M, Greig C, Holmbäck U, Narici M, McPhee J, Poggiogalle E, Power D, Scafoglieri A, Schultz R, Sieber CC, Cederholm T (2015) Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Direc Assoc 16(9):740–747. https://doi.org/10.1016/j.jamda.2015.05.021. ISSN 1525-8610

    Article  Google Scholar 

Download references

Funding

No funding was received for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Sevinc.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gungor, O., Sevinc, M., Ulu, S. et al. Sarcopenia and cardiovascular disease in patients with and without kidney disease: what do we know?. Int Urol Nephrol 55, 1161–1171 (2023). https://doi.org/10.1007/s11255-022-03393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03393-0

Keywords

Navigation