Skip to main content

Advertisement

Log in

An update review on hemodynamic instability in renal replacement therapy patients

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Hemodynamic instability in patients undergoing kidney replacement therapy (KRT) is one of the most common and essential factors influencing mortality, morbidity, and the quality of life in this patient population.

Method

Decreased cardiac preload, reduced systemic vascular resistance, redistribution of fluids, fluid overload, inflammatory factors, and changes in plasma osmolality have all been implicated in the pathophysiology of hemodynamic instability associated with KRT.

Result

A cascade of these detrimental mechanisms may ultimately cause intra-dialytic hypotension, reduced tissue perfusion, and impaired kidney rehabilitation. Multiple parameters, including dialysate composition, temperature, posture during dialysis sessions, physical activity, fluid administrations, dialysis timing, and specific pharmacologic agents, have been studied as possible management modalities. Nevertheless, a clear consensus is not reached.

Conclusion

This review includes a thorough investigation of the literature on hemodynamic instability in KRT patients, providing insight on interventions that may potentially minimize factors leading to hemodynamic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Douvris A, Zeid K, Hiremath S, Bagshaw SM, Wald R, Beaubien-Souligny W et al (2019) Mechanisms for hemodynamic instability related to renal replacement therapy: a narrative review. Intensive Care Med 45(10):1333–1346

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tonelli M, Astephen P, Andreou P, Beed S, Lundrigan P, Jindal K (2002) Blood volume monitoring in intermittent hemodialysis for acute renal failure. Kidney Int 62(3):1075–1080

    Article  PubMed  Google Scholar 

  3. Tanguay TA, Jensen L, Johnston C (2007) Predicting episodes of hypotension by continuous blood volume monitoring among critically ill patients in acute renal failure on intermittent hemodialysis. Dynamics 18(3):19–24

    PubMed  Google Scholar 

  4. Bitker L, Bayle F, Yonis H, Gobert F, Leray V, Taponnier R et al (2016) Prevalence and risk factors of hypotension associated with preload-dependence during intermittent hemodialysis in critically ill patients. Crit Care 20:44

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I et al (2007) Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (B.E.S.T. kidney) investigators. Intensive Care Med 33(9):1563–1570

    Article  PubMed  Google Scholar 

  6. Akhoundi A, Singh B, Vela M, Chaudhary S, Monaghan M, Wilson GA et al (2015) Incidence of adverse events during continuous renal replacement therapy. Blood Purif 39(4):333–339

    Article  CAS  PubMed  Google Scholar 

  7. Tislér A, Akócsi K, Hárshegyi I, Varga G, Ferenczi S, Grosz M et al (2002) Comparison of dialysis and clinical characteristics of patients with frequent and occasional hemodialysis-associated hypotension. Kidney Blood Press Res 25(2):97–102

    Article  PubMed  Google Scholar 

  8. K/DOQI Workgroup (2005) K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45(4 Suppl 3):S1–153. https://www.ajkd.org/article/S0272-6386(05)00092-2/fulltext

  9. Capuano A, Sepe V, Cianfrone P, Castellano T, Andreucci VE (1990) Cardiovascular impairment, dialysis strategy and tolerance in elderly and young patients on maintenance haemodialysis. Nephrol Dial Transplant 5(12):1023–1030

    Article  CAS  PubMed  Google Scholar 

  10. Flythe JE, Chang TI, Gallagher MP, Lindley E, Madero M, Sarafidis PA et al (2020) Blood pressure and volume management in dialysis: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 97(5):861–876

    Article  PubMed  PubMed Central  Google Scholar 

  11. Keane DF, Raimann JG, Zhang H, Willetts J, Thijssen S, Kotanko P (2021) The time of onset of intradialytic hypotension during a hemodialysis session associates with clinical parameters and mortality. Kidney Int 99(6):1408–1417

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moore TJ, Lazarus JM, Hakim RM (1989) Reduced angiotensin receptors and pressor responses in hypotensive hemodialysis patients. Kidney Int 36(4):696–701

    Article  CAS  PubMed  Google Scholar 

  13. Burton JO, Jefferies HJ, Selby NM, McIntyre CW (2009) Hemodialysis-induced repetitive myocardial injury results in global and segmental reduction in systolic cardiac function. Clin J Am Soc Nephrol 4(12):1925–1931

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pillinger NL, Kam P (2017) Endothelial glycocalyx: basic science and clinical implications. Anaesth Intensive Care 45(3):295–307

    Article  CAS  PubMed  Google Scholar 

  15. Doshi M, Murray PT (2003) Approach to intradialytic hypotension in intensive care unit patients with acute renal failure. Artif Organs 27(9):772–780

    Article  PubMed  Google Scholar 

  16. Van der Mullen J, Wise R, Vermeulen G, Moonen PJ, Malbrain M (2018) Assessment of hypovolaemia in the critically ill. Anaesthesiol Intensive Ther 50(2):141–149

    Article  PubMed  Google Scholar 

  17. Silversides JA, Pinto R, Kuint R, Wald R, Hladunewich MA, Lapinsky SE et al (2014) Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care 18(6):624

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34(2):344–353

    Article  PubMed  Google Scholar 

  19. Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12(3):R74

    Article  PubMed  PubMed Central  Google Scholar 

  20. Murugan R, Balakumar V, Kerti SJ, Priyanka P, Chang CH, Clermont G et al (2018) Net ultrafiltration intensity and mortality in critically ill patients with fluid overload. Crit Care 22(1):223

    Article  PubMed  PubMed Central  Google Scholar 

  21. Reilly RF (2014) Attending rounds: a patient with intradialytic hypotension. Clin J Am Soc Nephrol 9(4):798–803

    Article  PubMed  PubMed Central  Google Scholar 

  22. Monnet X, Teboul JL (2015) Passive leg raising: five rules, not a drop of fluid! Crit Care 19(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  23. Monnet X, Cipriani F, Camous L, Sentenac P, Dres M, Krastinova E et al (2016) The passive leg raising test to guide fluid removal in critically ill patients. Ann Intensive Care 6(1):46

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schortgen F, Soubrier N, Delclaux C, Thuong M, Girou E, Brun-Buisson C et al (2000) Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med 162(1):197–202

    Article  CAS  PubMed  Google Scholar 

  25. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH et al (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62(6):485–495

    Article  PubMed  Google Scholar 

  26. Converse RL Jr, Jacobsen TN, Jost CM, Toto RD, Grayburn PA, Obregon TM et al (1992) Paradoxical withdrawal of reflex vasoconstriction as a cause of hemodialysis-induced hypotension. J Clin Invest 90(5):1657–1665

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shimizu K, Kurosawa T, Sanjo T (2008) Effect of hyperosmolality on vasopressin secretion in intradialytic hypotension: a mechanistic study. Am J Kidney Dis 52(2):294–304

    Article  CAS  PubMed  Google Scholar 

  28. Cernaro V, Lacquaniti A, Lorenzano G, Loddo S, Romeo A, Donato V et al (2012) Apelin, plasmatic osmolality and hypotension in dialyzed patients. Blood Purif 33(4):317–323

    Article  CAS  PubMed  Google Scholar 

  29. Stabellini G, Bosi GP, Valeno V, Pellati A, Masotti M, Fiocchi O et al (1998) Relation between the osmolality trend and ornithine decarboxylase activity in red blood cells of uremic patients during hemodialytic treatment. Biomed Pharmacother 52(4):166–168

    Article  CAS  PubMed  Google Scholar 

  30. Fasanella d’Amore T, Wauters JP, Waeber B, Nussberger J, Brunner HR (1985) Response of plasma vasopressin to changes in extracellular volume and/or plasma osmolality in patients on maintenance hemodialysis. Clin Nephrol 23(6):299–302

    CAS  PubMed  Google Scholar 

  31. Mc Causland FR, Waikar SS (2015) Association of predialysis calculated plasma osmolarity with intradialytic blood pressure decline. Am J Kidney Dis 66(3):499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mc Causland FR, Brunelli SM, Waikar SS (2013) Dialysis dose and intradialytic hypotension: results from the HEMO study. Am J Nephrol 38(5):388–396

    Article  CAS  PubMed  Google Scholar 

  33. Lynch KE, Ghassemi F, Flythe JE, Feng M, Ghassemi M, Celi LA et al (2016) Sodium modelling to reduce intradialytic hypotension during haemodialysis for acute kidney injury in the intensive care unit. Nephrology (Carlton) 21(10):870–877

    Article  CAS  PubMed  Google Scholar 

  34. Lima EQ, Silva RG, Donadi EL, Fernandes AB, Zanon JR, Pinto KR et al (2012) Prevention of intradialytic hypotension in patients with acute kidney injury submitted to sustained low-efficiency dialysis. Ren Fail 34(10):1238–1243

    Article  CAS  PubMed  Google Scholar 

  35. Paganini EP, Sandy D, Moreno L, Kozlowski L, Sakai K (1996) The effect of sodium and ultrafiltration modelling on plasma volume changes and haemodynamic stability in intensive care patients receiving haemodialysis for acute renal failure: a prospective, stratified, randomized, cross-over study. Nephrol Dial Transplant 11(Suppl 8):32–37

    Article  PubMed  Google Scholar 

  36. Brummelhuis WJ, van Geest RJ, van Schelven LJ, Boer WH (2009) Sodium profiling, but not cool dialysate, increases the absolute plasma refill rate during hemodialysis. Asaio j 55(6):575–580

    Article  CAS  PubMed  Google Scholar 

  37. Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM (2015) Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol 26(3):724–734

    Article  CAS  PubMed  Google Scholar 

  38. Yu J, Liu Z, Shen B, Teng J, Zou J, Ding X (2018) Intradialytic hypotension as an independent risk factor for long-term mortality in maintaining hemodialysis patients: a 5-year follow-up cohort study. Blood Purif 45(4):320–326

    Article  CAS  PubMed  Google Scholar 

  39. Vincent JL, De Backer D, Wiedermann CJ (2016) Fluid management in sepsis: the potential beneficial effects of albumin. J Crit Care 35:161–167

    Article  CAS  PubMed  Google Scholar 

  40. Weil MH, Henning RJ, Puri VK (1979) Colloid oncotic pressure: clinical significance. Crit Care Med 7(3):113–116

    Article  CAS  PubMed  Google Scholar 

  41. Ricci Z, Romagnoli S, Ronco C (2018) The 10 false beliefs in adult critical care nephrology. Intensive Care Med 44(8):1302–1305

    Article  PubMed  Google Scholar 

  42. Sherman RA (2016) We lower blood flow for intradialytic hypotension. Semin Dial 29(4):295–296

    Article  PubMed  Google Scholar 

  43. Schytz PA, Mace ML, Soja AM, Nilsson B, Karamperis N, Kristensen B et al (2015) Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis. Nephrol Dial Transplant 30(12):2075–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Trivedi HS, Kukla A, Prowant B, Lim HJ (2007) A study of the extracorporeal rate of blood flow and blood pressure during hemodialysis. Hemodial Int 11(4):424–429

    Article  PubMed  Google Scholar 

  45. McIntyre CW, Burton JO, Selby NM, Leccisotti L, Korsheed S, Baker CS et al (2008) Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol 3(1):19–26

    Article  PubMed  PubMed Central  Google Scholar 

  46. Buchanan C, Mohammed A, Cox E, Köhler K, Canaud B, Taal MW et al (2017) Intradialytic cardiac magnetic resonance imaging to assess cardiovascular responses in a short-term trial of hemodiafiltration and hemodialysis. J Am Soc Nephrol 28(4):1269–1277

    Article  PubMed  Google Scholar 

  47. Aneman A, Vieillard-Baron A (2016) Cardiac dysfunction in sepsis. Intensive Care Med 42(12):2073–2076

    Article  PubMed  Google Scholar 

  48. Mahmoud H, Forni LG, McIntyre CW, Selby NM (2017) Myocardial stunning occurs during intermittent haemodialysis for acute kidney injury. Intensive Care Med 43(6):942–944

    Article  PubMed  PubMed Central  Google Scholar 

  49. Slessarev M, Salerno F, Ball IM, McIntyre CW (2019) Continuous renal replacement therapy is associated with acute cardiac stunning in critically ill patients. Hemodial Int 23(3):325–332

    PubMed  Google Scholar 

  50. Schindler R, Beck W, Deppisch R, Aussieker M, Wilde A, Göhl H et al (2004) Short bacterial DNA fragments: detection in dialysate and induction of cytokines. J Am Soc Nephrol 15(12):3207–3214

    Article  PubMed  Google Scholar 

  51. Bommer J, Becker KP, Urbaschek R (1996) Potential transfer of endotoxin across high-flux polysulfone membranes. J Am Soc Nephrol 7(6):883–888

    Article  CAS  PubMed  Google Scholar 

  52. Schiffl H (2011) High-flux dialyzers, backfiltration, and dialysis fluid quality. Semin Dial 24(1):1–4

    Article  PubMed  Google Scholar 

  53. Ra WARD (2007) Worldwide water standards for hemodialysis. Hemodial Int 11(s1):S18–S25

    Article  Google Scholar 

  54. Moore I, Bhat R, Hoenich NA, Kilner AJ, Prabhu M, Orr KE et al (2009) A microbiological survey of bicarbonate-based replacement circuits in continuous veno-venous hemofiltration. Crit Care Med 37(2):496–500

    Article  CAS  PubMed  Google Scholar 

  55. Levy B, Fritz C, Tahon E, Jacquot A, Auchet T, Kimmoun A (2018) Vasoplegia treatments: the past, the present, and the future. Crit Care 22(1):52

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fani F, Regolisti G, Delsante M, Cantaluppi V, Castellano G, Gesualdo L et al (2018) Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol 31(3):351–359

    Article  CAS  PubMed  Google Scholar 

  57. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA (2019) Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96(5):1083–1099

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pun PH, Horton JR, Middleton JP (2013) Dialysate calcium concentration and the risk of sudden cardiac arrest in hemodialysis patients. Clin J Am Soc Nephrol 8(5):797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Afshinnia F, Belanger K, Palevsky PM, Young EW (2013) Effect of ionized serum calcium on outcomes in acute kidney injury needing renal replacement therapy: secondary analysis of the acute renal failure trial network study. Ren Fail 35(10):1310–1318

    Article  PubMed  Google Scholar 

  60. Fellner SK, Lang RM, Neumann A, Spencer KT, Bushinsky DA, Borow KM (1989) Physiological mechanisms for calcium-induced changes in systemic arterial pressure in stable dialysis patients. Hypertension 13(3):213–218

    Article  CAS  PubMed  Google Scholar 

  61. Scholze A, Maier A, Stocks F, Karamohamad F, Vetter R, Zidek W et al (2005) Sustained increase of extracellular calcium concentration causes arterial vasoconstriction in humans. J Hypertens 23(11):2049–2054

    Article  CAS  PubMed  Google Scholar 

  62. Schepelmann M, Yarova PL, Lopez-Fernandez I, Davies TS, Brennan SC, Edwards PJ et al (2016) The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure. Am J Physiol Cell Physiol 310(3):C193-204

    Article  CAS  PubMed  Google Scholar 

  63. Haddy FJ, Vanhoutte PM, Feletou M (2006) Role of potassium in regulating blood flow and blood pressure. Am J Physiol Regul Integr Comp Physiol 290(3):R546–R552

    Article  CAS  PubMed  Google Scholar 

  64. Dolson GM, Ellis KJ, Bernardo MV, Prakash R, Adrogué HJ (1995) Acute decreases in serum potassium augment blood pressure. Am J Kidney Dis 26(2):321–326

    Article  CAS  PubMed  Google Scholar 

  65. Gabutti L, Salvadé I, Lucchini B, Soldini D, Burnier M (2011) Haemodynamic consequences of changing potassium concentrations in haemodialysis fluids. BMC Nephrol 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Patel S, Raimann JG, Kotanko P (2017) The impact of dialysis modality and membrane characteristics on intradialytic hypotension. Semin Dial 30(6):518–531

    Article  PubMed  Google Scholar 

  67. Haroon S, Davenport A (2018) Choosing a dialyzer: What clinicians need to know. Hemodial Int 22(S2):S65-s74

    Article  PubMed  Google Scholar 

  68. Heegard KD, Tilley MA, Stewart IJ, Edgecombe HP, Lundy JB, Renz EM et al (2013) Anaphylactoid reaction during first hemofiltration with a PUREMA polysulfone membrane. Int J Artif Organs 36(5):363–366

    Article  CAS  PubMed  Google Scholar 

  69. Ansorge W, Pelger M, Dietrich W, Baurmeister U (1987) Ethylene oxide in dialyzer rinsing fluid: effect of rinsing technique, dialyzer storage time, and potting compound. Artif Organs 11(2):118–122

    Article  CAS  PubMed  Google Scholar 

  70. Müller TF, Seitz M, Eckle I, Lange H, Kolb G (1998) Biocompatibility differences with respect to the dialyzer sterilization method. Nephron 78(2):139–142

    Article  PubMed  Google Scholar 

  71. Dolovich J, Bell B (1978) Allergy to a product(s) of ethylene oxide gas: demonstration of IgE and IgG antibodies and hapten specificity. J Allergy Clin Immunol 62(1):30–32

    Article  CAS  PubMed  Google Scholar 

  72. Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL (1990) Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int 38(5):982–984

    Article  CAS  PubMed  Google Scholar 

  73. Kokubo K, Kurihara Y, Kobayashi K, Tsukao H, Kobayashi H (2015) Evaluation of the biocompatibility of dialysis membranes. Blood Purif 40(4):293–297

    Article  CAS  PubMed  Google Scholar 

  74. Itoh S, Susuki C, Tsuji T (2006) Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species. J Biomed Mater Res A 77(2):294–303

    Article  PubMed  Google Scholar 

  75. Stricker KH, Takala J, Hullin R, Ganter CC (2009) When drugs disappear from the patient: elimination of intravenous medication by hemodiafiltration. Anesth Analg 109(5):1640–1643

    Article  PubMed  Google Scholar 

  76. Mohammad A, Zafar N, Feerick A (2010) Cardiac arrest in intensive care unit: Case report and future recommendations. Saudi J Anaesth 4(1):31–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rosa AA, Fryd DS, Kjellstrand CM (1980) Dialysis symptoms and stabilization in long-term dialysis. Practical application of the CUSUM plot. Arch Intern Med 140(6):804–807

    Article  CAS  PubMed  Google Scholar 

  78. McGuire S, Horton EJ, Renshaw D, Jimenez A, Krishnan N, McGregor G (2018) Hemodynamic instability during dialysis: the potential role of intradialytic exercise. Biomed Res Int 2018:8276912

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sharma S, Waikar SS (2017) Intradialytic hypotension in acute kidney injury requiring renal replacement therapy. Semin Dial 30(6):553–558

    Article  PubMed  Google Scholar 

  80. Basile C, Pisano A, Lisi P, Rossi L, Lomonte C, Bolignano D (2016) High versus low dialysate sodium concentration in chronic haemodialysis patients: a systematic review of 23 studies. Nephrol Dial Transplant 31(4):548–563

    Article  PubMed  Google Scholar 

  81. Munoz Mendoza J, Arramreddy R, Schiller B (2015) Dialysate sodium: choosing the optimal hemodialysis bath. Am J Kidney Dis 66(4):710–720

    Article  CAS  PubMed  Google Scholar 

  82. Venkatasubba Rao CP, Bershad EM, Calvillo E, Maldonado N, Damani R, Mandayam S et al (2018) Real-time noninvasive monitoring of intracranial fluid shifts during dialysis using volumetric integral phase-shift spectroscopy (VIPS): a proof-of-concept study. Neurocrit Care 28(1):117–126

    Article  PubMed  Google Scholar 

  83. Ertuglu LA, Demiray A, Basile C, Afsar B, Covic A, Kanbay M (2021) Sodium and ultrafiltration profiling in hemodialysis: a long-forgotten issue revisited. Hemodial Int 25(4):433–446

    Article  PubMed  Google Scholar 

  84. Rosales LM, Schneditz D, Morris AT, Rahmati S, Levin NW (2000) Isothermic hemodialysis and ultrafiltration. Am J Kidney Dis 36(2):353–361

    Article  CAS  PubMed  Google Scholar 

  85. Maggiore Q, Pizzarelli F, Sisca S, Catalano C, Delfino D (1984) Vascular stability and heat in dialysis patients. Contrib Nephrol 41:398–402

    Article  CAS  PubMed  Google Scholar 

  86. Jost CM, Agarwal R, Khair-el-Din T, Grayburn PA, Victor RG, Henrich WL (1993) Effects of cooler temperature dialysate on hemodynamic stability in “problem” dialysis patients. Kidney Int 44(3):606–612

    Article  CAS  PubMed  Google Scholar 

  87. Selby NM, Burton JO, Chesterton LJ, McIntyre CW (2006) Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin J Am Soc Nephrol 1(6):1216–1225

    Article  PubMed  Google Scholar 

  88. Curley FJ (1995) Hypothermia: a critical problem in the intensive care unit. J Intensive Care Med 10(1):1–2

    Article  CAS  PubMed  Google Scholar 

  89. Manthous CA, Hall JB, Olson D, Singh M, Chatila W, Pohlman A et al (1995) Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med 151(1):10–14

    Article  CAS  PubMed  Google Scholar 

  90. Rokyta R Jr, Matejovic M, Krouzecky A, Opatrny K Jr, Ruzicka J, Novak I (2004) Effects of continuous venovenous haemofiltration-induced cooling on global haemodynamics, splanchnic oxygen and energy balance in critically ill patients. Nephrol Dial Transplant 19(3):623–630

    Article  PubMed  Google Scholar 

  91. Robert R, Méhaud JE, Timricht N, Goudet V, Mimoz O, Debaene B (2012) Benefits of an early cooling phase in continuous renal replacement therapy for ICU patients. Ann Intensive Care 2(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  92. Knoll GA, Grabowski JA, Dervin GF, O’Rourke K (2004) A randomized, controlled trial of albumin versus saline for the treatment of intradialytic hypotension. J Am Soc Nephrol 15(2):487–492

    Article  CAS  PubMed  Google Scholar 

  93. Jardin F, Prost JF, Ozier Y, Margairaz A (1982) Hemodialysis in septic patients: improvements in tolerance of fluid removal with concentrated albumin as the priming fluid. Crit Care Med 10(10):650–652

    Article  CAS  PubMed  Google Scholar 

  94. Macedo E, Karl B, Lee E, Mehta RL (2021) A randomized trial of albumin infusion to prevent intradialytic hypotension in hospitalized hypoalbuminemic patients. Crit Care 25(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  95. Henrich WL, Woodard TD, Blachley JD, Gomez-Sanchez C, Pettinger W, Cronin RE (1980) Role of osmolality in blood pressure stability after dialysis and ultrafiltration. Kidney Int 18(4):480–488

    Article  CAS  PubMed  Google Scholar 

  96. Mc Causland FR, Prior LM, Heher E, Waikar SS (2012) Preservation of blood pressure stability with hypertonic mannitol during hemodialysis initiation. Am J Nephrol 36(2):168–174

    Article  CAS  PubMed  Google Scholar 

  97. Nette RW, Krepel HP, van den Meiracker AH, Weimar W, Zietse R (2002) Specific effect of the infusion of glucose on blood volume during haemodialysis. Nephrol Dial Transplant 17(7):1275–1280

    Article  PubMed  Google Scholar 

  98. van der Sande FM, Kooman JP, Barendregt JN, Nieman FH, Leunissen KM (1999) Effect of intravenous saline, albumin, or hydroxyethylstarch on blood volume during combined ultrafiltration and hemodialysis. J Am Soc Nephrol 10(6):1303–1308

    Article  PubMed  Google Scholar 

  99. Rubinstein S, Haimov M, Ross MJ (2008) Midodrine-induced vascular ischemia in a hemodialysis patient: a case report and literature review. Ren Fail 30(8):808–812

    Article  PubMed  Google Scholar 

  100. Parsaik AK, Singh B, Altayar O, Mascarenhas SS, Singh SK, Erwin PJ et al (2013) Midodrine for orthostatic hypotension: a systematic review and meta-analysis of clinical trials. J Gen Intern Med 28(11):1496–1503

    Article  PubMed  PubMed Central  Google Scholar 

  101. Prakash S, Garg AX, Heidenheim AP, House AA (2004) Midodrine appears to be safe and effective for dialysis-induced hypotension: a systematic review. Nephrol Dial Transplant 19(10):2553–2558

    Article  CAS  PubMed  Google Scholar 

  102. van der Zee S, Thompson A, Zimmerman R, Lin J, Huan Y, Braskett M et al (2007) Vasopressin administration facilitates fluid removal during hemodialysis. Kidney Int 71(4):318–324

    Article  PubMed  Google Scholar 

  103. du Cheyron D, Terzi N, Seguin A, Valette X, Prevost F, Ramakers M et al (2013) Use of online blood volume and blood temperature monitoring during haemodialysis in critically ill patients with acute kidney injury: a single-centre randomized controlled trial. Nephrol Dial Transplant 28(2):430–437

    Article  PubMed  Google Scholar 

  104. Beladi Mousavi SS, Tamadon MR (2014) Vasopressin and prevention of hypotension during hemodialysis. Iran Red Crescent Med J 16(11):e20219

    PubMed  PubMed Central  Google Scholar 

  105. Dungey M, Bishop NC, Young HM, Burton JO, Smith AC (2015) The impact of exercising during haemodialysis on blood pressure, markers of cardiac injury and systemic inflammation-preliminary results of a pilot study. Kidney Blood Press Res 40(6):593–604

    Article  CAS  PubMed  Google Scholar 

  106. Mohseni R, Emami Zeydi A, Ilali E, Adib-Hajbaghery M, Makhlough A (2013) The effect of intradialytic aerobic exercise on dialysis efficacy in hemodialysis patients: a randomized controlled trial. Oman Med J 28(5):345–349

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ookawara S, Miyazawa H, Ito K, Ueda Y, Kaku Y, Hirai K et al (2016) Blood volume changes induced by low-intensity intradialytic exercise in long-term hemodialysis patients. Asaio j 62(2):190–196

    Article  CAS  PubMed  Google Scholar 

  108. March DS, Graham-Brown MP, Stover CM, Bishop NC, Burton JO (2017) Intestinal barrier disturbances in haemodialysis patients: mechanisms, consequences, and therapeutic options. Biomed Res Int 2017:5765417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bivins HG, Knopp R, dos Santos PA (1985) Blood volume distribution in the Trendelenburg position. Ann Emerg Med 14(7):641–643

    Article  CAS  PubMed  Google Scholar 

  110. Sibbald WJ, Paterson NA, Holliday RL, Baskerville J (1979) The Trendelenburg position: hemodynamic effects in hypotensive and normotensive patients. Crit Care Med 7(5):218–224

    Article  CAS  PubMed  Google Scholar 

  111. Coll E, Vallès M, Torguet P, Bronsoms J, Maté G, Mauri JM (2004) Evaluation of plasma volume variation during different hemodialysis maneuvers. Nefrologia 24(5):463–469

    CAS  PubMed  Google Scholar 

  112. Brunet P, Saingra Y, Leonetti F, Vacher-Coponat H, Ramananarivo P, Berland Y (1996) Tolerance of haemodialysis: a randomized cross-over trial of 5-h versus 4-h treatment time. Nephrol Dial Transplant 11(Suppl 8):46–51

    Article  PubMed  Google Scholar 

  113. Fagugli RM, Reboldi G, Quintaliani G, Pasini P, Ciao G, Cicconi B et al (2001) Short daily hemodialysis: blood pressure control and left ventricular mass reduction in hypertensive hemodialysis patients. Am J Kidney Dis 38(2):371–376

    Article  CAS  PubMed  Google Scholar 

  114. André MB, Rembold SM, Pereira CM, Lugon JR (2002) Prospective evaluation of an in-center daily hemodialysis program: results of two years of treatment. Am J Nephrol 22(5–6):473–479

    Article  PubMed  Google Scholar 

  115. Okada K, Abe M, Hagi C, Maruyama T, Maruyama N, Ito K et al (2005) Prolonged protective effect of short daily hemodialysis against dialysis-induced hypotension. Kidney Blood Press Res 28(2):68–76

    Article  PubMed  Google Scholar 

  116. Heidenheim AP, Muirhead N, Moist L, Lindsay RM (2003) Patient quality of life on quotidian hemodialysis. Am J Kidney Dis 42(1 Suppl):36–41

    Article  PubMed  Google Scholar 

  117. Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Siriopol D, Covic A et al (2020) An update review of intradialytic hypotension: concept, risk factors, clinical implications and management. Clin Kidney J 13(6):981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. John S, Griesbach D, Baumgärtel M, Weihprecht H, Schmieder RE, Geiger H (2001) Effects of continuous haemofiltration vs intermittent haemodialysis on systemic haemodynamics and splanchnic regional perfusion in septic shock patients: a prospective, randomized clinical trial. Nephrol Dial Transplant 16(2):320–327

    Article  CAS  PubMed  Google Scholar 

  119. Schefold JC, von Haehling S, Pschowski R, Bender T, Berkmann C, Briegel S et al (2014) The effect of continuous versus intermittent renal replacement therapy on the outcome of critically ill patients with acute renal failure (CONVINT): a prospective randomized controlled trial. Crit Care 18(1):R11

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kielstein JT, Kretschmer U, Ernst T, Hafer C, Bahr MJ, Haller H et al (2004) Efficacy and cardiovascular tolerability of extended dialysis in critically ill patients: a randomized controlled study. Am J Kidney Dis 43(2):342–349

    Article  CAS  PubMed  Google Scholar 

  121. Uehlinger DE, Jakob SM, Ferrari P, Eichelberger M, Huynh-Do U, Marti HP et al (2005) Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrol Dial Transplant 20(8):1630–1637

    Article  PubMed  Google Scholar 

  122. Augustine JJ, Sandy D, Seifert TH, Paganini EP (2004) A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis 44(6):1000–1007

    Article  PubMed  Google Scholar 

  123. Russo DS, Eugenio CS, Balestrin IG, Rodrigues CG, Rosa RG, Teixeira C et al (2022) Comparison of hemodynamic instability among continuous, intermittent and hybrid renal replacement therapy in acute kidney injury: a systematic review of randomized clinical trials. J Crit Care 69:153998

    Article  PubMed  Google Scholar 

  124. Aberegg SK (2016) Ionized calcium in the ICU: should it be measured and corrected? Chest 149(3):846–855

    Article  PubMed  Google Scholar 

  125. Heering P, Ivens K, Thümer O, Braüse M, Grabensee B (1999) Acid-base balance and substitution fluid during continuous hemofiltration. Kidney Int Suppl 72:S37-40

    Article  CAS  Google Scholar 

  126. Tian JH, Ma B, Yang K, Liu Y, Tan J, Liu TX (2015) Bicarbonate- versus lactate-buffered solutions for acute continuous haemodiafiltration or haemofiltration. Cochrane Database Syst Rev 3:Cd006819

    Google Scholar 

  127. Davenport A, Davison AM, Will EJ (1993) Membrane biocompatibility: effects on cardiovascular stability in patients on hemofiltration. Kidney Int Suppl 41:S230–S234

    CAS  PubMed  Google Scholar 

  128. Hakim RM, Wingard RL, Parker RA (1994) Effect of the dialysis membrane in the treatment of patients with acute renal failure. N Engl J Med 331(20):1338–1342

    Article  CAS  PubMed  Google Scholar 

  129. Alonso A, Lau J, Jaber BL (2005) Biocompatible hemodialysis membranes for acute renal failure. Cochrane Database Syst Rev 2:Cd005283

    Google Scholar 

  130. Jaber BL, Lau J, Schmid CH, Karsou SA, Levey AS, Pereira BJ (2002) Effect of biocompatibility of hemodialysis membranes on mortality in acute renal failure: a meta-analysis. Clin Nephrol 57(4):274–282

    Article  CAS  PubMed  Google Scholar 

  131. Subramanian S, Venkataraman R, Kellum JA (2002) Influence of dialysis membranes on outcomes in acute renal failure: a meta-analysis. Kidney Int 62(5):1819–1823

    Article  CAS  PubMed  Google Scholar 

  132. Maheut H, Lacour F (2001) Using AN69 ST membrane: a dialysis centre experience. Nephrol Dial Transplant 16(7):1519–1520

    Article  CAS  PubMed  Google Scholar 

  133. Coppo R, Amore A, Cirina P, Scelfo B, Giacchino F, Comune L et al (2000) Bradykinin and nitric oxide generation by dialysis membranes can be blunted by alkaline rinsing solutions. Kidney Int 58(2):881–888

    Article  CAS  PubMed  Google Scholar 

  134. Sars B, van der Sande FM, Kooman JP (2020) Intradialytic hypotension: mechanisms and outcome. Blood Purif 49(1–2):158–167

    Article  PubMed  Google Scholar 

  135. Sumi H, Ishii A, Yamada Y, Shibagaki Y, Tominaga N (2022) Central volume shift in acute heart failure revealed by blood volume monitoring during haemodialysis. Clin Kidney J 15(5):1007–1009

    Article  PubMed  Google Scholar 

Download references

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Contributions

Contributed substantially to the conception or design of the work: ABY, SV, MK, AC. Drafted the work and revised it critically for important intellectual content: ABY, SV, AC, AB, MK.

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, A.B., Vehbi, S., Covic, A. et al. An update review on hemodynamic instability in renal replacement therapy patients. Int Urol Nephrol 55, 929–942 (2023). https://doi.org/10.1007/s11255-022-03389-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03389-w

Keywords

Navigation