Skip to main content

Advertisement

Log in

MRI determined prostate volume and the incidence of prostate cancer on MRI-fusion biopsy: a systemic review of reported data for the last 20 years

  • Urology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Purpose

Magnetic resonance imaging (MRI) is a precise, systemic and advantageous imaging technique when compared to transrectal ultrasound (TRUS) which is very operator dependent. The negative correlation between prostate volume and the incidence of prostate cancer (PCa) obtained by TRUS biopsy has been well documented in the literature. The purpose of this systemic review is analyzing the reported MRI-fusion study results on prostate biopsies regarding any correlation between prostate volume and the incidence of PCa.

Methods

After defining the inclusion and exclusion criteria an in-depth review were performed between 01.01.2000 and 02.08.2022 using the PubMed database and applying the “PRISMA” guidelines.

Results

Twelve studies qualified, and all showed an inverse/negative relationship between prostate volume and incidence of PCa. Sample sizes ranged from 33 to 2767 patients in single and multi-institutional studies. All studies showed a statistically significant inverse relationship with a p value < 0.05. The graph summarizing all of studies and using Fisher’s method revealed a highly significant combined p level of 0.00001. Additionally, not one single study was found showing the contrary (a positive correlation between prostate size and the incidence of PCa).

Conclusion

To our knowledge, this is the first systemic review of reported MRI-Fusion data on the incidence of PCa in correlation with prostate volume. This MRI review confirms previous TRUS-biopsy studies which demonstrated an inverse relationship between prostate volume and the incidence of PCa, and thus further supports the hypothesis that large prostates size may be protective against PCa when compared to smaller prostates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu FC, Hua KC, Lin JR et al (2019) Prostate resected weight and postoperative prostate cancer incidence after transurethral resection of the prostate: a population-based study. Medicine 98(3):e13897. https://doi.org/10.1097/MD.0000000000013897

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yamashiro JR, de Riese WTW (2021) Any correlation between prostate volume and incidence of prostate cancer: a review of reported data for the last thirty years. Res Rep Urol 13:749–757. https://doi.org/10.2147/RRU.S331506

    Article  PubMed  PubMed Central  Google Scholar 

  3. Liberati A et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lophatananon A et al (2021) Re-evaluating the diagnostic efficacy of PSA as a referral test to detect clinically significant prostate cancer in contemporary MRI-based image-guided biopsy pathways. J Clin Urol. https://doi.org/10.1177/20514158211059057

    Article  Google Scholar 

  5. al Hussein Al Awamlh B et al (2020) Multicenter analysis of clinical and MRI characteristics associated with detecting clinically significant prostate cancer in PI-RADS (v20) category 3 lesions. Urol Oncol 38(7):6379–63715. https://doi.org/10.1016/j.urolonc.2020.03.019

    Article  CAS  Google Scholar 

  6. Alves G, Yu YK (2011) Combining independent, weighted p-values: Achieving computational stability by a systematic expansion with controllable accuracy. PLoS ONE. https://doi.org/10.1371/journal.pone.0022647

    Article  PubMed  PubMed Central  Google Scholar 

  7. Al-Khalil S, Ibilibor C, Cammack JT, de Riese W (2016) Association of prostate volume with incidence and aggressiveness of prostate cancer. Res Rep Urol 8:201–205. https://doi.org/10.2147/RRU.S117963

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buie J, de Riese W, Sharma P (2019) Smaller prostate volume is associated with adverse pathological features and biochemical recurrence after radical prostatectomy. Urol Sci 30(6):255–261. https://doi.org/10.4103/UROS.UROS_28_19

    Article  Google Scholar 

  9. Kozimaa S, Costanzaa J, Cubillosa S (2016) Randomized prostate biopsies: does the number of core specimens and PSA value influence prostate cancer detection rate? Argent J Radiol 80(1):7–15

    Google Scholar 

  10. Lane BR, Zippe CD, Abouassaly R, Schoenfield L, Magi-Galluzzi C, Jones JS (2008) Saturation technique does not decrease cancer detection during followup after initial prostate biopsy. J Urol 179(5):1746–1750. https://doi.org/10.1016/j.juro.2008.01.049

    Article  PubMed  Google Scholar 

  11. Bhavsar A, Verma S (2014) Anatomic imaging of the prostate. BioMed Res Int. https://doi.org/10.1155/2014/728539

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hoeks CMA et al (2011) Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology 261(1):46–66. https://doi.org/10.1148/radiol.11091822

    Article  PubMed  Google Scholar 

  13. Verma S et al (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am J Roentgenol 198(6):1277–1288. https://doi.org/10.2214/AJR.12.8510

    Article  Google Scholar 

  14. Hricak H et al (1987) MR imaging of the prostate gland: normal anatomy. AJR Am J Roentgenol 148(1):51–58. https://doi.org/10.2214/ajr.148.1.51

    Article  CAS  PubMed  Google Scholar 

  15. Gurwin A et al (2022) Alternatives for MRI in prostate cancer diagnostics—review of current ultrasound-based techniques. Cancers (Basel) 14(8):1859. https://doi.org/10.3390/cancers14081859

    Article  CAS  Google Scholar 

  16. Holder K, Galvan B, Sakya J, de Riese W (2021) Anatomical changes of the peripheral zone depending on benign prostatic hyperplasia size and their potential clinical implications: a review for clinicians. Urol Practice 8(2):259–263

    Article  Google Scholar 

  17. Guzman JA, Sharma P, Smith LA, Buie JD, de Riese WT (2019) Histological changes of the peripheral zone in small and large prostates and possible clinical implications. Res Rep Urol 11:77–81. https://doi.org/10.2147/RRU.S182781

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sellers J, Wagstaff RG, Helo N, de Riese WTW (2021) Quantitative measurements of prostatic zones by MRI and their dependence on prostate size: possible clinical implications in prostate cancer. Ther Adv Urol. https://doi.org/10.1177/17562872211000852

    Article  PubMed  PubMed Central  Google Scholar 

  19. Weaver PE, Smith LA, Sharma P, Keesari R, Al Mekdash H, de Riese WT (2020) Quantitative measurements of prostate capsule and gland density and their correlation to prostate size: possible clinical implications in prostate cancer. Int Urol Nephrol 52(10):1829–1837. https://doi.org/10.1007/s11255-020-02527-6

    Article  PubMed  Google Scholar 

  20. Marks LS, Roehrborn CG, Wolford E, Wilson TH (2007) The effect of dutasteride on the peripheral and transition zones of the prostate and the value of the transition zone index in predicting treatment response. J Urol 177(4):1408–1413. https://doi.org/10.1016/j.juro.2006.11.095

    Article  CAS  PubMed  Google Scholar 

  21. Tarle M, Spajic B, Kraljic I, Kusic Z (2016) Continuous finasteride therapy for benign prostate hypertrophy upgrades both neuroendorcine differentiation and aggressive prostate cancer. Anticancer Res 29(5):1797–801

  22. Lorenzo G, Hughes TJR, Reali A, Gomez H (2020) A numerical simulation study of the dual role of 5α-reductase inhibitors on tumor growth in prostates enlarged by benign prostatic hyperplasia via stress relaxation and apoptosis upregulation. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2020.112843

    Article  Google Scholar 

  23. Lorenzo G, Hughes TJR, Dominguez-Frojan P, Reali A, Gomez H (2019) Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth. Proc Natl Acad Sci USA 116(4):1152–1161. https://doi.org/10.1073/pnas.1815735116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu HJ, Lai MK (1998) The usefulness of prostate-specific antigen (PSA) density in patients with intermediate serum PSA level in a country with low incidence of prostate cancer. Urology 51(5A Suppl):125–130. https://doi.org/10.1016/s0090-4295(98)00066-1

    Article  CAS  PubMed  Google Scholar 

  25. Dunn MW (2017) Prostate cancer screening. Semin Oncol Nurs 33(2):156–164. https://doi.org/10.1016/j.soncn.2017.02.003

    Article  PubMed  Google Scholar 

  26. Elliott CS, Shinghal R, Presti JC (2009) The influence of prostate volume on prostate-specific antigen performance: implications for the prostate cancer prevention trial outcomes. Clin Cancer Res 15(14):4694–4699. https://doi.org/10.1158/1078-0432.CCR-08-2277

    Article  CAS  PubMed  Google Scholar 

  27. Al-Azab R, Toi A, Lockwood G, Kulkarni GS, Fleshner N (2007) Prostate volume is strongest predictor of cancer diagnosis at transrectal ultrasound-guided prostate biopsy with prostate-specific antigen values between 2.0 and 9.0 ng/mL. Urology 69(1):103–107. https://doi.org/10.1016/j.urology.2006.09.041

    Article  PubMed  Google Scholar 

  28. Chen Y et al (2019) The specific choice of transrectal ultrasound-guided prostate biopsy scheme based on prostate specific antigen and prostate specific antigen density. Med Sci Monit 25:6230–6235. https://doi.org/10.12659/MSM.915826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inahara M et al (2006) Improved prostate cancer detection using systematic 14-core biopsy for large prostate glands with normal digital rectal examination findings. Urology 68(4):815–819. https://doi.org/10.1016/j.urology.2006.05.010

    Article  PubMed  Google Scholar 

  30. Gang Wei C et al (2020) Biparametric prostate MRI and clinical indicators predict clinically significant prostate cancer in men with ‘gray zone’ PSA levels. Eur J Radiol. https://doi.org/10.1016/j.ejrad.2020.108977

    Article  Google Scholar 

  31. Zheng S et al (2019) The roles of MRI-based prostate volume and associated zone-adjusted prostate-specific antigen concentrations in predicting prostate cancer and high-risk prostate cancer. PLoS ONE. https://doi.org/10.1371/journal.pone.0218645

    Article  PubMed  PubMed Central  Google Scholar 

  32. Salami SS, Ben-Levi E, Yaskiv O, Turkbey B, Villani R, Rastinehad AR (2017) Risk stratification of prostate cancer utilizing apparent diffusion coefficient value and lesion volume on multiparametric MRI. J Magn Reson Imaging 45(2):610–616. https://doi.org/10.1002/jmri.25363

    Article  PubMed  Google Scholar 

  33. Sankineni S et al (2015) Posterior subcapsular prostate cancer: identification with mpMRI and MRI/TRUS fusion-guided biopsy. Abdom Imaging 40(7):2557–2565. https://doi.org/10.1007/s00261-015-0426-8

    Article  PubMed  PubMed Central  Google Scholar 

  34. Westhoff N et al (2019) Defining the target prior to prostate fusion biopsy: the effect of MRI reporting on cancer detection. World J Urol 37(2):327–335. https://doi.org/10.1007/s00345-018-2400-x

    Article  PubMed  Google Scholar 

  35. Chen S, Yang Y, Peng T, Yu X, Deng H, Guo Z (2020) The prediction value of PI-RADS v2 score in high-grade prostate cancer: a multicenter retrospective study. Int J Med Sci 17(10):1366–1374. https://doi.org/10.7150/ijms.45730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costa DN et al (2021) Prospective PI-RADS v2.1 atypical benign prostatic hyperplasia nodules with marked restricted diffusion: detection of clinically significant prostate cancer on multiparametric MRI. Am J Roentgenol 217(2):395–403. https://doi.org/10.2214/AJR.20.24370

    Article  Google Scholar 

  37. Xu N et al (2018) Can prostate imaging reporting and data system version 2 reduce unnecessary prostate biopsies in men with PSA levels of 4–10 ng/ml? J Cancer Res Clin Oncol 144(5):987–995. https://doi.org/10.1007/s00432-018-2616-6

    Article  CAS  PubMed  Google Scholar 

  38. Qi Y et al (2020) Multiparametric MRI-based radiomics for prostate cancer screening with PSA in 4–10 ng/mL to reduce unnecessary biopsies. J Magn Reson Imaging 51(6):1890–1899. https://doi.org/10.1002/jmri.27008

    Article  PubMed  Google Scholar 

  39. Watts KL et al (2020) Systematic review and meta-analysis comparing cognitive vs. image-guided fusion prostate biopsy for the detection of prostate cancer. Urol Oncol 38(9):734.e19-734.e25. https://doi.org/10.1016/j.urolonc.2020.03.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner T. W. de Riese.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight, A.S., Sharma, P. & de Riese, W.T.W. MRI determined prostate volume and the incidence of prostate cancer on MRI-fusion biopsy: a systemic review of reported data for the last 20 years. Int Urol Nephrol 54, 3047–3054 (2022). https://doi.org/10.1007/s11255-022-03351-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03351-w

Keywords

Navigation