Skip to main content

Advertisement

Log in

Simvastatin inhibits prostatic hyperplasia in rats with metabolic syndrome

  • Urology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objects

To evaluate the influence of metabolic syndrome (MetS) induced by high fat diet (HFD) on prostate tissue and local inflammatory factors in rats model, and the protective efficacy of statins against pathological changes of prostate.

Methods

40 Sprague–Dawley rats were divided into 4 subgroups of normal diet (ND), HFD blank, HFD + saline and HFD + simvastatin. After the establishment of models, all subjects were killed to obtain body weight serum lipid, FBG level, FINS and HOMA-IR level. Hyperplasia level of prostate, as well as expression level of interleukin 6 (IL-6), insulin-like growth factor 1 (IGF-1), interleukin 10 (IL-10) and tumor necrosis factor alpha (TNF-α) were also measured.

Results

Models have been successfully established. Level of serum lipid, prostatic weight, hyperplasia as well as expressions of IL-6, TNF-α and IGF-1 in the blank and saline subgroups of HFD group were higher than that of ND group (P < 0.05). While simvastatin has significantly resisted the former effects of HFD on serum lipid and prostate (P < 0.05). No significant difference in serum FBG level was found between groups and subunits. FINS levels of ND group was lower than other groups (P < 0.05). In addition, There is no significant difference in FPG and HOMA-IR levels in blank control subunit, saline control subunit, simvastatin subunit (P > 0.05).

Conclusions

MetS induced by HFD is an important factor in the induction of BPH. Simvastatin can alleviate the hyperplasia of prostate through the relief of local inflammation in prostatic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cakir SS, Ozcan L, Polat EC et al (2020) Statins are effective in the treatment of benign prostatic hyperplasia with metabolic syndrome. Aging Male 23(5):538–543

    Article  Google Scholar 

  2. Park YW, Kim SB, Kwon H et al (2013) The relationship between lower urinary tract symptoms/benign prostatic hyperplasia and the number of components of metabolic syndrome. Urology 82(3):674–679

    Article  Google Scholar 

  3. Zhang X, Zeng X, Liu Y et al (2014) Impact of metabolic syndrome on benign prostatic hyperplasia in elderly Chinese men. Urol Int 93(2):214–219

    Article  CAS  Google Scholar 

  4. Xia BW, Zhao SC, Chen ZP et al (2020) The underlying mechanism of metabolic syndrome on benign prostatic hyperplasia and prostate volume. Prostate 80(6):481–490

    Article  CAS  Google Scholar 

  5. Xu C, Xu Y, Shen Z et al (2018) Effects of metformin on prostatic tissue of rats with metabolic syndrome and benign prostatic hyperplasia. Int Urol Nephrol 50(4):611–617. https://doi.org/10.1007/s11255-018-1826-9

    Article  CAS  PubMed  Google Scholar 

  6. Vykhovanets EV, Resnick MI, Marengo SR (2005) The healthy rat prostate contains high levels of natural killer-like cells and unique subsets of CD4+ helper-inducer T cells: implications for prostatitis. J Urol 173(3):1004–1010

    Article  Google Scholar 

  7. Sirtori CR (2014) The pharmacology of statins. Pharmacol Res 88:3–11. https://doi.org/10.1016/j.phrs.2014.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Romano M, Diomede L, Sironi M et al (2000) Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest 80(7):1095–1100

    Article  CAS  Google Scholar 

  9. Shimizu K, Aikawa M, Takayama K et al (2003) Direct anti-inflammatory mechanisms contribute to attenuation of experimental allograft arteriosclerosis by statins. Circulation 108(17):2113–2120

    Article  CAS  Google Scholar 

  10. Zhang X, Zeng X, Dong L et al (2015) The effects of statins on benign prostatic hyperplasia in elderly patients with metabolic syndrome. World J Urol 33(12):2071–2077

    Article  CAS  Google Scholar 

  11. Chung GE, Yim JY, Kim D et al (2020) Nonalcoholic fatty liver disease is associated with benign prostate hyperplasia. J Korean Med Sci 35(22):e164

    Article  Google Scholar 

  12. Wang F, Ge A, Dai A et al (2020) Analysis of prostate-specific antigen-related indexes, neutrophil-to-lymphocyte ratio in patients with concurrent benign prostatic hyperplasia and histologic prostatitis. Clin Lab. https://doi.org/10.7754/Clin.Lab.2019.190428

    Article  PubMed  Google Scholar 

  13. Nickel JC, Roehrborn CG, O’Leary MP et al (2008) The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur Urol 54(6):1379–1384

    Article  Google Scholar 

  14. Robert G, Descazeaud A, Nicolaïew N et al (2009) Inflammation in benign prostatic hyperplasia: a 282 patients’ immunohistochemical analysis. Prostate 69(16):1774–1780. https://doi.org/10.1002/pros.21027

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zlotta AR, Egawa S, Pushkar D et al (2014) Prevalence of inflammation and benign prostatic hyperplasia on autopsy in Asian and Caucasian men. Eur Urol 66(4):619–622

    Article  Google Scholar 

  16. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of the third report of the National Cholesterol Education Program (NCEP) Expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 285(19):2486–2497

    Article  Google Scholar 

  17. Devaraj S, Singh U, Jialal I (2009) Human C-reactive protein and the metabolic syndrome. Curr Opin Lipidol 20(3):182–189

    Article  CAS  Google Scholar 

  18. Shankar E, Vykhovanets EV, Vykhovanets OV et al (2012) High-fat diet activates pro-inflammatory response in the prostate through association of Stat-3 and NF-κB. Prostate 72(3):233–243. https://doi.org/10.1002/pros.21425

    Article  CAS  PubMed  Google Scholar 

  19. De Nunzio C, Aronson W, Freedland SJ et al (2012) The correlation between metabolic syndrome and prostatic diseases. Eur Urol 61(3):560–570

    Article  Google Scholar 

  20. Vignozzi L, Gacci M, Maggi M (2016) Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat Rev Urol 13(2):108–119

    Article  CAS  Google Scholar 

  21. Wang L, Yang JR, Yang LY et al (2008) Chronic inflammation in benign prostatic hyperplasia: implications for therapy. Med Hypotheses 70(5):1021–1023

    Article  Google Scholar 

  22. Gacci M, Vignozzi L, Sebastianelli A et al (2013) Metabolic syndrome and lower urinary tract symptoms: the role of inflammation. Prostate Cancer Prostatic Dis 16(1):101–106

    Article  CAS  Google Scholar 

  23. St Sauver JL, Jacobsen SJ, Jacobson DJ et al (2011) Statin use and decreased risk of benign prostatic enlargement and lower urinary tract symptoms. BJU Int 107(3):443–450

    Article  Google Scholar 

  24. Yang X, Zhang Q, Jiang G et al (2019) The effects of statins on benign prostatic hyperplasia and the lower urinary tract symptoms: a meta-analysis. Medicine (Baltimore) 98(18):e15502

    Article  CAS  Google Scholar 

  25. McLaren ID, Jerde TJ, Bushman W (2011) Role of interleukins, IGF and stem cells in BPH. Differentiation 82(4–5):237–243

    Article  CAS  Google Scholar 

  26. Fibbi B, Penna G, Morelli A et al (2010) Chronic inflammation in the pathogenesis of benign prostatic hyperplasia. Int J Androl 33(3):475–488

    Article  CAS  Google Scholar 

  27. Danesh FR, Anel RL, Zeng L et al (2003) Immunomodulatory effects of HMG-CoA reductase inhibitors. Arch Immunol Ther Exp (Warsz) 51:139–148

    CAS  Google Scholar 

  28. Kwak BR, Mulhaupt F, Mach F (2003) Atherosclerosis: anti-inflammatory and immunomodulatory activities of statins. Autoimmun Rev 2(6):332–338

    Article  CAS  Google Scholar 

  29. Liberale L, Carbone F, Montecucco F et al (2020) Statins reduce vascular inflammation in atherogenesis: A review of underlying molecular mechanisms. Int J Biochem Cell Biol 122:105735

    Article  CAS  Google Scholar 

  30. Kaplan-Lefko PJ, Sutherland BW, Evangelou AI et al (2008) Enforced epithelial expression of IGF-1 causes hyperplastic prostate growth while negative selection is requisite for spontaneous metastogenesis. Oncogene 27(20):2868–2876

    Article  CAS  Google Scholar 

  31. Lu T, Lin WJ, Izumi K et al (2012) Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development. Mol Endocrinol 26(10):1707–1715

    Article  CAS  Google Scholar 

  32. Cevenini A, Orrù S, Mancini A et al (2018) Molecular signatures of the insulin-like growth factor 1-mediated epithelial-mesenchymal transition in breast, lung and gastric cancers. Int J Mol Sci 19(8):2411

    Article  Google Scholar 

  33. Szkodziński J, Romanowski W, Hudzik B et al (2009) Effect of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitors on the concentration of insulin-like growth factor-1 (IGF-1) in hypercholesterolemic patients. Pharmacol Rep 61(4):654–664

    Article  Google Scholar 

  34. Bergen K, Brismar K, Tehrani S (2016) High-dose atorvastatin is associated with lower IGF-1 levels in patients with type 1 diabetes. Growth Horm IGF Res 29:78–82

    Article  CAS  Google Scholar 

  35. Liu F, Sun Y, Liu B et al (2018) Insulin-like growth factor-1 induces epithelial-mesenchymal transition in hepatocellular carcinoma by activating survivin. Oncol Rep 40(2):952–958

    CAS  PubMed  Google Scholar 

  36. Yin L, Tang Y, Pan A et al (2019) The application of IL-10 and TNF-α in expressed prostatic secretions and prostatic exosomal protein in urine in the diagnosis of patients with chronic prostatitis. Medicine (Baltimore) 98(33):e16848

    Article  CAS  Google Scholar 

  37. Roya N, Fatemeh T, Faramarz MA et al (2020) Frequency of IL-10+CD19+ B cells in patients with prostate cancer compared to patients with benign prostatic hyperplasia. Afr Health Sci 20(3):1264–1272

    Article  Google Scholar 

  38. Zhang P, Zhang X, Huang Y et al (2021) Atorvastatin alleviates microglia-mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice. Free Radic Biol Med 162:104–117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Relevant personnel from the department of pathology, laboratory animals center, and urology of Anhui provincial hospital have provided a great deal of help.

Funding

This study was funded by Natural Science Foundation of Anhui Province (1908085QH315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Huang.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Ethical approval

The use of animals in this research was approved by the ethics committee of experimental animal of Anhui medical university.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y.m., Wang, X., Liu, S. et al. Simvastatin inhibits prostatic hyperplasia in rats with metabolic syndrome. Int Urol Nephrol 54, 2125–2131 (2022). https://doi.org/10.1007/s11255-022-03227-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03227-z

Keywords

Navigation