Skip to main content

Advertisement

Log in

Research progress on the relationship between IS and kidney disease and its complications

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Indoxyl sulphate (IS) a representative uraemic toxin in the blood of patients with chronic kidney disease (CKD). Its accumulation may be closely related to CKD and the increasing morbidity and mortality of the disease’s related complications. Timely and effective detection of the IS level and efficient clearance of IS may effectively prevent the progression of CKD and its related complications. Therefore, this article summarizes the research progress of IS related, including IS in CKD and its associated complications including chronic kidney disease, chronic kidney disease with cardiovascular disease, renal anemia, bone mineral metabolic disease and neuropsychiatric disorders, looking for IS accurate rapid detection methods, and explore the efficient treatment to reduce blood levels of indole phenol sulphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Jager KJ, Fraser SDS (2017) The ascending rank of chronic kidney disease in the global burden of disease study. Nephrol Dial Transplant 32(suppl_2):ii121–ii128

    Article  PubMed  Google Scholar 

  2. Bharati J, Jha V, Levin A (2021) The global kidney health Atlas: burden and opportunities to improve kidney health worldwide. Ann Nutr Metab 76(suppl1):1–6

    Google Scholar 

  3. Li HX, Lu WH, Wang A et al (2021) Changing epidemiology of chronic kidney disease as a result of type 2 diabetes mellitus from 1990 to 2017: estimates from global burden of disease 2017. J Diabetes Investig 12:346–356

    Article  PubMed  Google Scholar 

  4. Duan J, Wang C, Liu D et al (2019) Prevalence and risk factors of chronic kidney disease and diabetic kidney disease in Chinese rural residents: a cross-sectional survey. Sci Rep 9(1):10408

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang JW, Wang F, Saran R et al (2018) Mortality risk of chronic kidney disease: A comparison between the adult populations in urban China and the United States. PLoS ONE 13(3):e0193734

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hill NR, Fatoba ST, Oke JL et al (2016) Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS ONE 11(7):e0158765

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eloot S, Schneditz D, Cornelis T et al (2016) Protein-bound uremic toxin profiling as a tool to optimize hemodialysis. PLoS ONE 11(1):e0147159

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nigam Sanjay K, Wu W, Bush Kevin T et al (2015) Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephrol 10(11):2039–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sirich Tammy L, Aronov Pavel A, Plummer Natalie S et al (2013) Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int 84(3):585–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Snauwaert E, Holvoet E, Van Biesen W et al (2019) Uremic toxin concentrations are related to residual kidney function in the pediatric hemodialysis population. Toxins (Basel) 11(4):235

    Article  CAS  Google Scholar 

  11. Xie T, Bao M, Zhang P et al (2019) Serum concentration of indoxyl sulfate in peritoneal dialysis patients and low-flux hemodialysis patients. Blood Purif 48(2):183–190

    Article  CAS  PubMed  Google Scholar 

  12. Holle J, Querfeld U, Kirchner M et al (2019) Indoxyl sulfate associates with cardiovascular phenotype in children with chronic kidney disease. Pediatr Nephrol 34(12):2571–2582

    Article  PubMed  Google Scholar 

  13. Adesso S, Popolo A, Bianco G et al (2013) The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PLoS ONE 8(9):e76778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ellis RJ, Small DM, Ng KL et al (2018) Indoxyl sulfate induces apoptosis and hypertrophy in human kidney proximal tubular cells. Toxicol Pathol 46(4):449–459

    Article  CAS  PubMed  Google Scholar 

  15. Yu Yan L, Xiao Dong L, Liu L et al (2016) Mechanism of indoxyl sulfate promoting renal fibrosis. J Third Mil Med Univ 38(02):119–123

    Google Scholar 

  16. Milanesi S, Garibaldi S, Saio M et al (2019) Indoxyl sulfate induces renal fibroblast activation through a targetable heat shock protein 90-dependent pathway. Oxid Med Cell Longev 2019:2050183

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dou L, Poitevin S, Sallée M et al (2018) Aryl hydrocarbon receptor is activated in patients and mice with chronic kidney disease. Kidney Int 93(4):986–999

    Article  CAS  PubMed  Google Scholar 

  18. Saito S, Yisireyili M, Shimizu H et al (2015) Indoxyl sulfate upregulates prorenin expression via nuclear factor-κB p65, signal transducer and activator of transcription 3, and reactive oxygen species in proximal tubular cells. J Ren Nutr 25(2):145–148

    Article  CAS  PubMed  Google Scholar 

  19. Kaushal GP, Chandrashekar K, Juncos LA (2019) Molecular interactions between reactive oxygen species and autophagy in kidney disease. Int J Mol Sci 20(15):3791

    Article  CAS  PubMed Central  Google Scholar 

  20. Edamatsu T, Fujieda A, Itoh Y (2018) Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLoS ONE 13(2):e0193342

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li SZ, Cheng SJ, Sun ZZ et al (2016) Indoxyl sulfate induces mesangial cell proliferation via the induction of COX-2. Mediators Inflamm 2016:5802973

    Article  PubMed  PubMed Central  Google Scholar 

  22. Major RW, Cheng MRI, Grant RA et al (2018) Cardiovascular disease risk factors in chronic kidney disease: a systematic review and meta-analysis. PLoS ONE 13(3):e0192895

    Article  PubMed  PubMed Central  Google Scholar 

  23. Fan PC, Chang JC, Lin CN et al (2019) Serum indoxyl sulfate predicts adverse cardiovascular events in patients with chronic kidney disease. J Formos Med Assoc 118(7):1099–1106

    Article  PubMed  Google Scholar 

  24. Lin CJ, Wu V, Wu PC et al (2015) Meta-Analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 10(7):e0132589

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang XR, Zhang JJ, Xu XX et al (2019) Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail 41(1):244–256

    Article  PubMed  PubMed Central  Google Scholar 

  26. Srivastava A, Kaze AD, McMullan CJ et al (2018) Uric acid and the risks of kidney failure and death in individuals with CKD. Am J Kidney Dis 71(3):362–370

    Article  CAS  PubMed  Google Scholar 

  27. Cao XS, Chen J, Zou JZ et al (2015) Association of indoxyl sulfate with heart failure among patients on hemodialysis. Clin J Am Soc Nephrol 10(1):111–119

    Article  CAS  PubMed  Google Scholar 

  28. Jin W, Yan W, Li DY et al (2019) Study on the relationship between indoxyl sulfate and NLRP3 inflammasome and mir-34A expression in rats with chronic renal insufficiency. Mod Dig Interv Diagn Treat 4:343–346

    Google Scholar 

  29. Xie J, Wu YL, Huang CL (2016) Deficiency of soluble α-klotho as an independent cause of uremic cardiomyopathy. Vitam Horm 101:311–330

    Article  CAS  PubMed  Google Scholar 

  30. Yang K, Wang C, Nie L et al (2015) Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J Am Soc Nephrol 26(10):2434–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen J, Zhang XY, Zhang H et al (2016) Indoxyl sulfate enhance the hypermethylation of klotho and promote the process of vascular calcification in chronic kidney disease. Int J Biol Sci 12(10):1236–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hung SC, Kuo KL, Huang HL et al (2016) Indoxyl sulfate suppresses endothelial progenitor cell-mediated neovascularization. Kidney Int 89(3):574–585

    Article  CAS  PubMed  Google Scholar 

  33. Kamiński Tomasz W, Krystyna P, Małgorzata K et al (2017) Indoxyl sulfate–the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrol 18(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  34. He T, Xiong J, Huang Y et al (2019) Klotho restrain RIG-1/NF-κB signaling activation and monocyte inflammatory factor release under uremic condition. Life Sci 231:116570

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe I, Tatebe J, Fujii T et al (2019) Prognostic significance of serum indoxyl sulfate and albumin for patients with cardiovascular disease. Int Heart J 60(1):129–135

    Article  CAS  PubMed  Google Scholar 

  36. Opdebeeck B, Maudsley S, Azmi A et al (2019) Indoxyl sulfate and p-cresyl sulfate promote vascular calcification and associate with glucose intolerance. J Am Soc Nephrol 30(5):751–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He X, Jiang HL, Gao FF et al (2019) Indoxyl sulfate-induced calcification of vascular smooth muscle cells via the PI3K/Akt/NF-κB signaling pathway. Microsc Res Tech 82(12):2000–2006

    Article  CAS  PubMed  Google Scholar 

  38. Kim HY, Yoo TH, Cho JY et al (2019) Indoxyl sulfate-induced TNF-α is regulated by crosstalk between the aryl hydrocarbon receptor, NF-κB, and SOCS2 in human macrophages. FASEB J 33(10):10844–10858

    Article  CAS  PubMed  Google Scholar 

  39. Ryu JH, Jeon EY, Kim SJ (2019) Indoxyl sulfate-induced extracellular vesicles released from endothelial cells stimulate vascular smooth muscle cell proliferation by inducing transforming growth factor-beta production. J Vasc Res 56(3):129–138

    Article  CAS  PubMed  Google Scholar 

  40. Suree L (2018) Cardiotoxicity of uremic toxins: a driver of cardiorenal syndrome. Toxins (Basel) 10(9):352

    Article  Google Scholar 

  41. Asanuma H, Chung H, Ito S et al (2019) AST-120, an adsorbent of uremic toxins, improves the pathophysiology of heart failure in conscious dogs. Cardiovasc Drugs Ther 33(3):277–286

    Article  PubMed  Google Scholar 

  42. Liu WC, Wu CC, Lim PS et al (2018) Effect of uremic toxin-indoxyl sulfate on the skeletal system. Clin Chim Acta 484:197–206

    Article  CAS  PubMed  Google Scholar 

  43. Adelibieke Y, Shimizu H, Saito S et al (2013) Indoxyl sulfate counteracts endothelial effects of erythropoietin through suppression of akt phosphorylation. Circ J 77(5):1326–1336

    Article  CAS  PubMed  Google Scholar 

  44. Ahmed Mohamed SE, Abed M, Voelkl J et al (2013) Triggering of suicidal erythrocyte death by uremic toxin indoxyl sulfate. BMC Nephrol 14:244

    Article  PubMed  Google Scholar 

  45. Asai H, Hirata J, Hirano A et al (2016) Activation of aryl hydrocarbon receptor mediates suppression of hypoxia-inducible factor-dependent erythropoietin expression by indoxyl sulfate. Am J Physiol Cell Physiol 310(2):C142-150

    Article  PubMed  Google Scholar 

  46. Wu CJ, Chen CY, Lai TS et al (2017) The role of indoxyl sulfate in renal anemia in patients with chronic kidney disease. Oncotarget 8(47):83030–83037

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dias GF, Bonan NB, Steiner TM et al (2018) Indoxyl sulfate, a uremic toxin, stimulates reactive oxygen species production and erythrocyte cell death supposedly by an organic anion transporter 2 (OAT2) and NADPH oxidase activity-dependent pathways. Toxins (Basel) 10(07):280

    Article  Google Scholar 

  48. Hamano H, Ikeda Y, Watanabe H et al (2018) The uremic toxin indoxyl sulfate interferes with iron metabolism by regulating hepcidin in chronic kidney disease. Nephrol Dial Transplant 33(4):586–597

    Article  CAS  PubMed  Google Scholar 

  49. Wu IW, Hsu KH, Sun CY et al (2014) Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on stage 5 chronic kidney disease patients: a randomized crossover study. Nephrol Dial Transplant 29(9):1719–1727

    Article  CAS  PubMed  Google Scholar 

  50. Bataille S, Pelletier M, Sallée M et al (2017) Indole 3-acetic acid, indoxyl sulfate and paracresyl-sulfate do not influence anemia parameters in hemodialysis patients. BMC Nephrol 18(1):251

    Article  PubMed  PubMed Central  Google Scholar 

  51. Deltombe O, Glorieux G, Marzouki S et al (2019) Selective transport of protein-bound uremic toxins in erythrocytes. Toxins (Basel) 11(7):385

    Article  CAS  Google Scholar 

  52. Massy Z, Drueke T (2017) Adynamic bone disease is a predominant bone pattern in early stages of chronic kidney disease. J Nephrol 30(5):629–634

    Article  PubMed  Google Scholar 

  53. Yamamoto S, Fukagawa M (2017) Uremic Toxicity and Bone in CKD. J Nephrol 30(5):623–627

    Article  PubMed  Google Scholar 

  54. BarretoFellype C, Barreto Daniela V, Canziani Maria EF et al (2014) Association between indoxyl sulfate and bone histomorphometry in pre-dialysis chronic kidney disease patients. J Bras Nefrol 36(3):289–296

    Google Scholar 

  55. Kim YH, Kwak KA, Gil HW et al (2013) Indoxyl sulfate promotes apoptosis in cultured osteoblast cells. BMC Pharmacol Toxicol 14:60

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mozar A, Louvet L, Godin C et al (2012) Indoxyl sulphate inhibits osteoclast differentiation and function. Nephrol Dial Transplant 27:2176–2181

    Article  CAS  PubMed  Google Scholar 

  57. Liao YL, Chou CC, Lee YJ (2019) The association of indoxyl sulfate with fibroblast growth factor-23 in cats with chronic kidney disease. J Vet Intern Med 33(2):686–693

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hamada-Ode K, Taniguchi Y, Shimamura Y et al (2019) Serum dickkopf-related protein 1 and sclerostin may predict the progression of chronic kidney disease in Japanese patients. Nephrol Dial Transplant 34(8):1426–1427

    Article  CAS  PubMed  Google Scholar 

  59. Desjardins L, Liabeuf S, Oliveira RB et al (2014) Uremic toxicity and sclerostin in chronic kidney disease patients. Nephrol Ther 10(4):463–470

    Article  PubMed  Google Scholar 

  60. Changchien CY, Lin YH, Cheng YC et al (2019) Indoxyl sulfate induces myotube atrophy by ROS-ERK and JNK-MAFbx cascades. Chem Biol Interact 304:43–51

    Article  CAS  PubMed  Google Scholar 

  61. Thome T, Salyers ZR, Kumar RA et al (2019) Uremic metabolites impair skeletal muscle mitochondrial energetics through disruption of the electron transport system and matrix dehydrogenase activity. Am J Physiol, Cell Physiol 317(4):C701–C713

    Article  Google Scholar 

  62. Sato E, Mori T, Mishima E et al (2016) Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Sci Rep 6:36618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lin YT, Wu PH, Tsai YC et al (2019) Indoxyl sulfate induces apoptosis through oxidative stress and mitogen-activated protein kinase signaling pathway inhibition in human astrocytes. J Clin Med 8(2):191

    Article  CAS  PubMed Central  Google Scholar 

  64. Watanabe K, Watanabe T, Nakayama M (2014) Cerebro-renal interactions: impact of uremic toxins on cognitive function. Neurotoxicology 44:184–193

    Article  CAS  PubMed  Google Scholar 

  65. Adesso S, Magnus T, Cuzzocrea S et al (2017) Indoxyl sulfate affects glial function increasing oxidative stress and neuroinflammation in chronic kidney disease: interaction between astrocytes and microglia. Front Pharmacol 8:370

    Article  PubMed  PubMed Central  Google Scholar 

  66. Leong Sheldon C, Sirich TL (2016) Indoxyl sulfate-review of toxicity and therapeutic strategies. Toxins (Basel) 8(12):358

    Article  Google Scholar 

  67. Yeh YC, Huang MF, Liang SS et al (2016) Indoxyl sulfate, not p-cresyl sulfate, is associated with cognitive impairment in early-stage chronic kidney disease. Neurotoxicology 53:148–152

    Article  CAS  PubMed  Google Scholar 

  68. Hosoya K, Tachikawa M (2011) Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol 15(4):478–485

    Article  CAS  PubMed  Google Scholar 

  69. Stinghen AE, Chillon JM, Massy ZA et al (2014) Differential effects of indoxyl sulfate and inorganic phosphate in a murine cerebral endothelial cell line (bEnd.3). Toxins (Basel) 6(6):1742–1760

    Article  CAS  Google Scholar 

  70. Shu C, Chen XJ, Xia TY et al (2016) LC-MS/MS method for simultaneous determination of serum p-cresyl sulfate and indoxyl sulfate in patients undergoing peritoneal dialysis. Biomed Chromatogr 30(11):1782–1788

    Article  CAS  PubMed  Google Scholar 

  71. Niwa T (2010) Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr 20(5 Suppl):S2–S6

    Article  CAS  PubMed  Google Scholar 

  72. Zhang A, Rijal K, Ng Seng K et al (2017) A mass spectrometric method for quantification of tryptophan-derived uremic solutes in human serum. J Biol Methods 4(3):e75

    Article  PubMed  PubMed Central  Google Scholar 

  73. Prokopienko Alexander J, West Raymond E, Stubbs Jason R et al (2019) Development and validation of a UHPLC-MS/MS method for measurement of a gut-derived uremic toxin panel in human serum: an application in patients with kidney disease. J Pharm Biomed Anal 174:618–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xiao YH, Ge LY, Zhu Q et al (2019) Determination of indoxyl sulfate and p-cresol sulfate in human plasma by ultra performance liquid chromatography-tandem mass spectrometry. J Anal Sci 2:243–246

    Google Scholar 

  75. Fushimi Y, Tatebe J, Okuda Y et al (2019) Performance evaluation of an indoxyl sulfate assay kit “NIPRO.” Clin Chem Lab Med 57(11):1770–1776

    Article  CAS  PubMed  Google Scholar 

  76. Matsuo K, Yamamoto S, Wakamatsu T et al (2015) Increased proinflammatory cytokine production and decreased cholesterol efflux due to downregulation of ABCG1 in macrophages exposed to indoxyl sulfate. Toxins (Basel) 7(8):3155–3166

    Article  CAS  Google Scholar 

  77. Itoh Y, Ezawa A, Kikuchi K et al (2012) Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem 403(7):1841–1850

    Article  CAS  PubMed  Google Scholar 

  78. Yamamoto SGR, Zuo YQ, Ma J et al (2011) Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice. Nephrol Dial Transplant 26(8):2491–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang K, Xu X, Nie L et al (2015) Indoxyl sulfate induces oxidative stress and hypertrophy in cardiomyocytes by inhibiting the AMPK/UCP2 signaling pathway. Toxicol Lett 234(2):110–119

    Article  CAS  PubMed  Google Scholar 

  80. Hideki F, Fuyuhiko N, Sumie G et al (2009) Oral charcoal adsorbent (AST-120) prevents progression of cardiac damage in chronic kidney disease through suppression of oxidative stress. Nephrol Dial Transplant 24(7):2089–2095

    Article  Google Scholar 

  81. Lekawanvijit S, Kompa AR, Manabe M et al (2012) Chronic kidney disease-induced cardiac fibrosis is ameliorated by reducing circulating levels of a non-dialysable uremic toxin, indoxyl sulfate. PLoS ONE 7(7):e41281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Savira F, Cao L, Wang I et al (2017) Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: implications for cardiorenal syndrome. PLoS ONE 12(11):e0187459

    Article  PubMed  PubMed Central  Google Scholar 

  83. Iwasaki Y, Kazama JJ, Yamato H et al (2013) Accumulated uremic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone 57(2):477–483

    Article  CAS  PubMed  Google Scholar 

  84. Sirich Tammy L, Fong K, Larive B et al (2017) Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the frequent hemodialysis network daily trial. Kidney Int 91(5):1186–1192

    Article  CAS  PubMed  Google Scholar 

  85. Pavlenko D, van Geffen E, van Steenbergen MJ et al (2016) New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma. Sci Rep 6:34429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Madero M, Cano KB, Campos I et al (2019) Removal of protein-bound uremic toxins during hemodialysis using a binding competitor. Clin J Am Soc Nephrol 14(3):394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Maheshwari V, Thijssen S, Tao X et al (2019) In silico comparison of protein-bound uremic toxin removal by hemodialysis, hemodiafiltration, membrane adsorption, and binding competition. Sci Rep 9(1):909

    Article  PubMed  PubMed Central  Google Scholar 

  88. Suguru Y, Mami S, Yoko S et al (2018) Adsorption of protein-bound uremic toxins through direct hemoperfusion with hexadecyl-immobilized cellulose beads in patients undergoing hemodialysis. Artif Organs 42(1):88–93

    Article  Google Scholar 

  89. Marieke S, Sven T-B, Tobias B et al (2019) A bifunctional adsorber particle for the removal of hydrophobic uremic toxins from whole blood of renal failure patients. Toxins (Basel) 11(7):389

    Article  Google Scholar 

  90. Cai YJ, Sun XG, Sang XP et al (2019) Effect of Tong Fu Hua Zhuo Liang Xue prescription on elimination of indoxyl sulfate in rats with chronic renal failure. Acta Chinese Med Pharmacol 47(01):30–33

    Google Scholar 

  91. Bennis Y, Cluet Y, Titeca-Beauport D et al (2019) The effect of sevelamer on serum levels of gut-derived uremic toxins: results from in vitro experiments and a multicenter, double-blind, placebo-controlled randomized clinical trial. Toxins (Basel) 11(5):279

    Article  CAS  Google Scholar 

  92. Asai M, Kumakura S, Kikuchi M (2019) Review of the efficacy of AST-120 (KREMEZIN) on renal function in chronic kidney disease patients. Ren Fail 41(1):47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pavlenko D, Giasafaki D, Charalambopoulou G et al (2017) Carbon adsorbents with dual porosity for efficient removal of uremic toxins and cytokines from human plasma. Sci Rep 7(1):14914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Anraku M, Tabuchi R, Ifuku S et al (2017) An oral absorbent, surface-deacetylated chitin nano-fiber ameliorates renal injury and oxidative stress in 5/6 nephrectomized rats. Carbohydr Polym 161:21–25

    Article  CAS  PubMed  Google Scholar 

  95. Sandeman SR, Zheng Y, Ingavle GC et al (2017) A haemocompatible and scalable nanoporous adsorbent monolith synthesised using a novel lignin binder route to augment the adsorption of poorly removed uraemic toxins in haemodialysis. Biomed Mater 12(3):035001

    Article  PubMed  Google Scholar 

  96. Okishima A, Koide H, Hoshino Y et al (2019) Design of synthetic polymer nanoparticles specifically capturing indole, a small toxic molecule. Biomacromol 20(4):1644–1654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to all those who helped us during the writing of this manuscript.

Funding

Foundation item: The project of introducing overseas students of Hebei province, C20210357, Yan Gao.

Author information

Authors and Affiliations

Authors

Contributions

YG and YL conceived of the study, and XD and QW participated in its design and Qian Wang helped to draft the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qian Wang or Haisong Zhang.

Ethics declarations

Competing interests

All of the authors had no any personal, financial, commercial or academic conflicts of interest separately.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, Y., Duan, X. et al. Research progress on the relationship between IS and kidney disease and its complications. Int Urol Nephrol 54, 2881–2890 (2022). https://doi.org/10.1007/s11255-022-03209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-022-03209-1

Keywords

Navigation