Abstract
Purpose
Indole-3-acetic acid is a protein-bound indolic uremic toxin deriving from tryptophan metabolism. Increased levels are associated with higher thrombotic risk and both cardiovascular and all-cause mortality. An emerging biomarker of cardiovascular disease is the monocyte-to-high-density lipoprotein ratio (MHR). The main purpose of this study was to investigate the association of indole-3-acetic acid with MHR and other markers of cardiovascular risk in patients with chronic kidney disease (CKD).
Methods
We enrolled 61 non-dialysis CKD patients and 6 dialysis patients. Indole-3-acetic acid levels were measured with ELISA technique.
Results
In the whole cohort of 67 patients, indole-3-acetic acid was directly related to Ca × P (ρ = 0.256; P = 0.0365) and MHR (ρ = 0.321; P = 0.0082). In the 40 patients with previous cardiovascular events, indole-3-acetic acid correlated with uric acid (r = 0.3952; P = 0.0116) and MHR (ρ = 0.380; P = 0.0157). MHR was related with fibrinogen (ρ = 0.426; P = 0.0010), arterial hypertension (ρ = 0.274; P = 0.0251), C-reactive protein (ρ = 0.332; P = 0.0061), gender (ρ = − 0.375; P = 0.0017; 0 = male, 1 = female), and CKD stage (ρ = 0.260; P = 0.0337). A multiple regression analysis suggested that indole-3-acetic acid might be an independent predictor of MHR.
Conclusion
This study shows a significant association between indole-3-acetic acid and MHR. Prospective studies are required to evaluate if decreasing indole-3-acetic acid concentrations may reduce MHR levels and cardiovascular events and improve clinical outcomes.
This is a preview of subscription content, access via your institution.





Availability of data and material
All data and materials support the published claims and comply with field standards.
Code availability
Not applicable.
References
Liabeuf S, Villain C, Massy ZA (2016) Protein-bound toxins: has the Cinderella of uraemic toxins turned into a princess? Clin Sci 130(23):2209–2216. https://doi.org/10.1042/cs20160393
Cernaro V, Medici MA, Leonello G, Buemi A, Kohnke FH, Villari A, Santoro D, Buemi M (2015) Auxin induces cell proliferation in an experimental model of mammalian renal tubular epithelial cells. Ren Fail 37(5):911–913. https://doi.org/10.3109/0886022x.2015.1015683
Cernaro V, Loddo S, Macaione V, Ferlazzo VT, Cigala RM, Crea F, De Stefano C, Genovese ARR, Gembillo G, Bolignano D, Santoro D, Vita R, Buemi M, Benvenga S (2020) RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. Int Urol Nephrol. https://doi.org/10.1007/s11255-020-02469-z
Gondouin B, Cerini C, Dou L, Sallée M, Duval-Sabatier A, Pletinck A, Calaf R, Lacroix R, Jourde-Chiche N, Poitevin S, Arnaud L, Vanholder R, Brunet P, Dignat-George F, Burtey S (2013) Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int 84(4):733–744. https://doi.org/10.1038/ki.2013.133
Dou L, Sallée M, Cerini C, Poitevin S, Gondouin B, Jourde-Chiche N, Fallague K, Brunet P, Calaf R, Dussol B, Mallet B, Dignat-George F, Burtey S (2015) The cardiovascular effect of the uremic solute indole-3 acetic acid. J Am Soc Nephrol 26(4):876–887. https://doi.org/10.1681/asn.2013121283
Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T (2003) Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 63(5):1671–1680. https://doi.org/10.1046/j.1523-1755.2003.00906.x
Satoh M, Hayashi H, Watanabe M, Ueda K, Yamato H, Yoshioka T, Motojima M (2003) Uremic toxins overload accelerates renal damage in a rat model of chronic renal failure. Nephron Exp Nephrol 95(3):e111-118. https://doi.org/10.1159/000074327
Paats J, Adoberg A, Arund J, Dhondt A, Fernström A, Fridolin I, Glorieux G, Leis L, Luman M, Gonzalez-Parra E, Perez-Gomez VM, Pilt K, Sanchez-Ospina D, Segelmark M, Uhlin F, Arduan Ortiz A (2020) Serum levels and removal by haemodialysis and haemodiafiltration of tryptophan-derived uremic toxins in ESKD patients. Int J Mol Sci. https://doi.org/10.3390/ijms21041522
Cornelis T, Eloot S, Vanholder R, Glorieux G, van der Sande FM, Scheijen JL, Leunissen KM, Kooman JP, Schalkwijk CG (2015) Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrol Dial Transplant 30(8):1395–1402. https://doi.org/10.1093/ndt/gfv038
Sercelik A, Besnili AF (2018) Increased monocyte to high-density lipoprotein cholesterol ratio is associated with TIMI risk score in patients with ST-segment. Revista Portuguesa de Cardiologia: Orgao Oficial da Sociedade Portuguesa de Cardiologia = Portuguese J Cardiol Off J Portuguese Soc Cardiol 37(3):217–223. https://doi.org/10.1016/j.repc.2017.06.021
Wang HY, Shi WR, Yi X, Zhou YP, Wang ZQ, Sun YX (2019) Assessing the performance of monocyte to high-density lipoprotein ratio for predicting ischemic stroke: insights from a population-based Chinese cohort. Lipids Health Dis 18(1):127. https://doi.org/10.1186/s12944-019-1076-6
Liu H, Liu K, Pei L, Gao Y, Zhao L, Sun S, Wu J, Li Y, Fang H, Song B, Xu Y (2020) Monocyte-to-high-density lipoprotein ratio predicts the outcome of acute ischemic stroke. J Atheroscler Thromb. https://doi.org/10.5551/jat.51151
Bolayir A, Gokce SF, Cigdem B, Bolayir HA, Yildiz OK, Bolayir E, Topaktas SA (2018) Monocyte/high-density lipoprotein ratio predicts the mortality in ischemic stroke patients. Neurol Neurochir Pol 52(2):150–155. https://doi.org/10.1016/j.pjnns.2017.08.011
Haybar H, Pezeshki SMS, Saki N (2019) Evaluation of complete blood count parameters in cardiovascular diseases: an early indicator of prognosis? Exp Mol Pathol 110:104267. https://doi.org/10.1016/j.yexmp.2019.104267
Arısoy A, Altunkaş F, Karaman K, Karayakalı M, Çelik A, Ceyhan K, Zorlu Ç (2017) Association of the monocyte to HDL cholesterol ratio with thrombus burden in patients with ST-segment elevation myocardial infarction. Clin Appl Thromb/Hemost 23(8):992–997. https://doi.org/10.1177/1076029616663850
Chen JW, Li C, Liu ZH, Shen Y, Ding FH, Shu XY, Zhang RY, Shen WF, Lu L, Wang XQ (2019) The role of monocyte to high-density lipoprotein cholesterol ratio in prediction of carotid intima-media thickness in patients with type 2 diabetes. Front Endocrinol 10:191. https://doi.org/10.3389/fendo.2019.00191
Ya G, Qiu Z, Tianrong P (2018) Relation of monocyte/high-density lipoprotein cholesterol ratio with coronary artery disease in type 2 diabetes mellitus. Clin Lab 64(6):901–906. https://doi.org/10.7754/Clin.Lab.2018.171022
Wu TT, Zheng YY, Chen Y, Yu ZX, Ma YT, Xie X (2019) Monocyte to high-density lipoprotein cholesterol ratio as long-term prognostic marker in patients with coronary artery disease undergoing percutaneous coronary intervention. Lipids Health Dis 18(1):180. https://doi.org/10.1186/s12944-019-1116-2
Sun M, Zhao D, Zhang Y, Zhai Y, Ye M, Wang X, Zheng L, Wang L (2020) Prognostic utility of monocyte to high-density lipoprotein ratio in patients with acute coronary syndrome: a meta-analysis. Am J Med Sci 359(5):281–286. https://doi.org/10.1016/j.amjms.2020.01.018
Shi WR, Wang HY, Chen S, Guo XF, Li Z, Sun YX (2019) The impact of monocyte to high-density lipoprotein ratio on reduced renal function: insights from a large population. Biomark Med 13(9):773–783. https://doi.org/10.2217/bmm-2018-0406
Sağ S, Yıldız A, Aydin Kaderli A, Gül BC, Bedir Ö, Ceğilli E, Özdemir B, Can FE, Aydınlar A (2017) Association of monocyte to HDL cholesterol level with contrast induced nephropathy in STEMI patients treated with primary PCI. Clin Chem Lab Med 55(1):132–138. https://doi.org/10.1515/cclm-2016-0005
Ulus T, Isgandarov K, Yilmaz AS, Uysal S, Vasi I, Dural M, Mutlu F (2018) Monocyte to high-density lipoprotein ratio predicts contrast-induced nephropathy in patients with acute coronary syndrome. Angiology 69(10):909–916. https://doi.org/10.1177/0003319718760916
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
Cernaro V, Lucisano S, Canale V, Bruzzese A, Caccamo D, Costantino G, Buemi M, Santoro D (2018) Acetate-free biofiltration to remove fibroblast growth factor 23 in hemodialysis patients: a pilot study. J Nephrol 31(3):429–433. https://doi.org/10.1007/s40620-017-0393-y
KDIGO (2012) Clinical practice guideline for the evaluation and management of chronic kidney disease (2013). Kidney Int Suppl 3:5–14. https://doi.org/10.1038/kisup.2012.77
Provenzano M, Coppolino G, Faga T, Garofalo C, Serra R, Andreucci M (2019) Epidemiology of cardiovascular risk in chronic kidney disease patients: the real silent killer. Rev Cardiovasc Med 20(4):209–220. https://doi.org/10.31083/j.rcm.2019.04.548
Fujii H, Goto S, Fukagawa M (2018) Role of uremic toxins for kidney, cardiovascular, and bone dysfunction. Toxins. https://doi.org/10.3390/toxins10050202
Savira F, Magaye R, Hua Y, Liew D, Kaye D, Marwick T, Wang BH (2019) Molecular mechanisms of protein-bound uremic toxin-mediated cardiac, renal and vascular effects: underpinning intracellular targets for cardiorenal syndrome therapy. Toxicol Lett 308:34–49. https://doi.org/10.1016/j.toxlet.2019.03.002
Lin CJ, Wu V, Wu PC, Wu CJ (2015) Meta-analysis of the associations of p-cresyl sulfate (PCS) and indoxyl sulfate (IS) with cardiovascular events and all-cause mortality in patients with chronic renal failure. PLoS ONE 10(7):e0132589. https://doi.org/10.1371/journal.pone.0132589
Karbowska M, Kaminski TW, Znorko B, Domaniewski T, Misztal T, Rusak T, Pryczynicz A, Guzinska-Ustymowicz K, Pawlak K, Pawlak D (2018) Indoxyl sulfate promotes arterial thrombosis in rat model via increased levels of complex TF/VII, PAI-1, platelet activation as well as decreased contents of SIRT1 and SIRT3. Front Physiol 9:1623
Kamiński TW, Pawlak K, Karbowska M, Myśliwiec M, Pawlak D (2017) Indoxyl sulfate—the uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrol 18(1):35
Winchester JF, Hostetter TH, Meyer TW (2009) p-Cresol sulfate: further understanding of its cardiovascular disease potential in CKD. Am J Kidney Dis 54(5):792–794
Castillo-Rodriguez E, Fernandez-Prado R, Esteras R, Perez-Gomez MV, Gracia-Iguacel C, Fernandez-Fernandez B, Kanbay M, Tejedor A, Lazaro A, Ruiz-Ortega M, Gonzalez-Parra E, Sanz AB, Ortiz A, Sanchez-Niño MD (2018) Impact of altered intestinal microbiota on chronic kidney disease progression. Toxins. https://doi.org/10.3390/toxins10070300
Calaf R, Cerini C, Génovésio C, Verhaeghe P, Jourde-Chiche N, Bergé-Lefranc D, Gondouin B, Dou L, Morange S, Argilés A, Rathelot P, Dignat-George F, Brunet P, Charpiot P (2011) Determination of uremic solutes in biological fluids of chronic kidney disease patients by HPLC assay. J Chromatogr B Anal Technol Biomed Life Sci 879(23):2281–2286. https://doi.org/10.1016/j.jchromb.2011.06.014
Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, Verbeke F, Speeckaert M, Joossens M, Couttenye MM, Vaneechoutte M, Glorieux G (2020) Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int 97(6):1230–1242. https://doi.org/10.1016/j.kint.2020.01.028
Chitalia VC, Shivanna S, Martorell J, Balcells M, Bosch I, Kolandaivelu K, Edelman ER (2013) Uremic serum and solutes increase post-vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor. Circulation 127(3):365–376. https://doi.org/10.1161/circulationaha.112.118174
Addi T, Dou L, Burtey S (2018) Tryptophan-derived uremic toxins and thrombosis in chronic kidney disease. Toxins. https://doi.org/10.3390/toxins10100412
Brito JS, Borges NA, Anjos JSD, Nakao LS, Stockler-Pinto MB, Paiva BR, Cardoso-Weide LC, Cardozo L, Mafra D (2019) Aryl hydrocarbon receptor and uremic toxins from the gut microbiota in chronic kidney disease patients: is there a relationship between them? Biochemistry 58(15):2054–2060. https://doi.org/10.1021/acs.biochem.8b01305
Dankers AC, Mutsaers HA, Dijkman HB, van den Heuvel LP, Hoenderop JG, Sweep FC, Russel FG, Masereeuw R (2013) Hyperuricemia influences tryptophan metabolism via inhibition of multidrug resistance protein 4 (MRP4) and breast cancer resistance protein (BCRP). Biochim Biophys Acta 1832(10):1715–1722. https://doi.org/10.1016/j.bbadis.2013.05.002
Liu Y, Sun X, Di D, Quan J, Zhang J, Yang X (2011) A metabolic profiling analysis of symptomatic gout in human serum and urine using high performance liquid chromatography-diode array detector technique. Clin Chim Acta 412(23–24):2132–2140. https://doi.org/10.1016/j.cca.2011.07.031
Gouroju S, Rao PVLNS, Bitla AR, Vinapamula KS, Manohar SM, Vishnubhotla S (2017) Role of gut-derived uremic toxins on oxidative stress and inflammation in patients with chronic kidney disease. Indian J Nephrol 27(5):359–364. https://doi.org/10.4103/ijn.IJN_71_17
Acikgoz N, Kurtoğlu E, Yagmur J, Kapicioglu Y, Cansel M, Ermis N (2018) Elevated monocyte to high-density lipoprotein cholesterol ratio and endothelial dysfunction in Behçet disease. Angiology 69(1):65–70. https://doi.org/10.1177/0003319717704748
Canpolat U, Çetin EH, Cetin S, Aydin S, Akboga MK, Yayla C, Turak O, Aras D, Aydogdu S (2016) Association of monocyte-to-HDL cholesterol ratio with slow coronary flow is linked to systemic inflammation. Clin Appl Thromb/Hemost 22(5):476–482. https://doi.org/10.1177/1076029615594002
Chen SA, Zhang MM, Zheng M, Liu F, Sun L, Bao ZY, Chen FK, Li HX, Gu X (2020) The preablation monocyte/ high density lipoprotein ratio predicts the late recurrence of paroxysmal atrial fibrillation after radiofrequency ablation. BMC Cardiovasc Disord 20(1):401. https://doi.org/10.1186/s12872-020-01670-3
Selvaggio S, Abate A, Brugaletta G, Musso C, Di Guardo M, Di Guardo C, Vicari ESD, Romano M, Luca S, Signorelli SS (2020) Platelet-to-lymphocyte ratio, neutrophil-to-lymphocyte ratio and monocyte-to-HDL cholesterol ratio as markers of peripheral artery disease in elderly patients. Int J Mol Med 46(3):1210–1216. https://doi.org/10.3892/ijmm.2020.4644
Villanueva DLE, Tiongson MD, Ramos JD, Llanes EJ (2020) Monocyte to High-Density Lipoprotein Ratio (MHR) as a predictor of mortality and Major Adverse Cardiovascular Events (MACE) among ST Elevation Myocardial Infarction (STEMI) patients undergoing primary percutaneous coronary intervention: a meta-analysis. Lipids Health Dis 19(1):55. https://doi.org/10.1186/s12944-020-01242-6
Kanbay M, Solak Y, Unal HU, Kurt YG, Gok M, Cetinkaya H, Karaman M, Oguz Y, Eyileten T, Vural A, Covic A, Goldsmith D, Turak O, Yilmaz MI (2014) Monocyte count/HDL cholesterol ratio and cardiovascular events in patients with chronic kidney disease. Int Urol Nephrol 46(8):1619–1625. https://doi.org/10.1007/s11255-014-0730-1
Zhan X, Pan D, Wei X, Wen D, Yan C, Xiao J (2020) Monocyte to high-density lipoprotein ratio and cardiovascular events in patients on peritoneal dialysis. Nutr Metab Cardiovasc Dis 30(7):1130–1136. https://doi.org/10.1016/j.numecd.2020.03.011
Barisione C, Garibaldi S, Furfaro AL, Nitti M, Palmieri D, Passalacqua M, Garuti A, Verzola D, Parodi A, Ameri P, Altieri P, Fabbi P, Ferrar PF, Brunelli C, Arsenescu V, Balbi M, Palombo D, Ghigliotti G (2016) Moderate increase of indoxyl sulfate promotes monocyte transition into profibrotic macrophages. PLoS ONE 11(2):e0149276. https://doi.org/10.1371/journal.pone.0149276
Vogel CF, Sciullo E, Matsumura F (2004) Activation of inflammatory mediators and potential role of ah-receptor ligands in foam cell formation. Cardiovasc Toxicol 4(4):363–373. https://doi.org/10.1385/ct:4:4:363
Naem E, Alcalde R, Gladysz M, Mesliniene S, Jaimungal S, Sheikh-Ali M, Haas MJ, Wong NC, Mooradian AD (2012) Inhibition of apolipoprotein A-I gene by the aryl hydrocarbon receptor: a potential mechanism for smoking-associated hypoalphalipoproteinemia. Life Sci 91(1–2):64–69. https://doi.org/10.1016/j.lfs.2012.06.002
Navab M, Reddy ST, Van Lenten BJ, Fogelman AM (2011) HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol 8(4):222–232. https://doi.org/10.1038/nrcardio.2010.222
Galli G, Panzetta G (1998) Acetate free biofiltration (AFB): from theory to clinical results. Clin Nephrol 50(1):28–37
Cernaro V, Tripepi G, Visconti L, Lacquaniti A, Montalto G, Romeo A, Cimadoro D, Costantino G, Torre F, Santoro D, Buemi M (2018) Convective dialysis reduces mortality risk: results from a large observational, population-based analysis. Ther Apher Dial 22(5):457–468. https://doi.org/10.1111/1744-9987.12684
Liabeuf S, Laville SM, Glorieux G, Cheddani L, Brazier F, Titeca Beauport D, Valholder R, Choukroun G, Massy ZA (2020) Difference in profiles of the gut-derived tryptophan metabolite indole acetic acid between transplanted and non-transplanted patients with chronic kidney disease. Int J Mol Sci. https://doi.org/10.3390/ijms21062031
van Gelder MK, Middel IR, Vernooij RWM, Bots ML, Verhaar MC, Masereeuw R, Grooteman MP, Nubé MJ, van den Dorpel MA, Blankestijn PJ, Rookmaaker MB, Gerritsen KGF (2020) Protein-bound uremic toxins in hemodialysis patients relate to residual kidney function, are not influenced by convective transport, and do not relate to outcome. Toxins (Basel) 12(4):234
Funding
Not applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all the authors, the corresponding author states that there is no conflict of interest.
Ethics approval
The study was performed according to the ethical standards of the 1964 Declaration of Helsinki.
Consent to participate
Written informed consent was obtained from all recruited patients.
Consent for publication
All the authors approved the submission of the article for publication in the Journal.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cernaro, V., Calabrese, V., Loddo, S. et al. Indole-3-acetic acid correlates with monocyte-to-high-density lipoprotein (HDL) ratio (MHR) in chronic kidney disease patients. Int Urol Nephrol 54, 2355–2364 (2022). https://doi.org/10.1007/s11255-022-03137-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11255-022-03137-0