Skip to main content

Bladder cancer biomarker screening based on non-targeted urine metabolomics

Abstract

Purpose

Bladder cancer is one of the most common malignancies of the urinary system, and its screening relies heavily on invasive cystoscopy, which increases the risk of urethral injury and infection. This study aims to use non-targeted metabolomics methods to screen for metabolites that are significantly different between the urine of bladder cancer patients and cancer-free controls.

Methods

In this study, liquid chromatography–mass spectrometry was used to analyze the urine of bladder cancer patients (n = 57) and the cancer-free controls (n = 38) by non-targeted metabolomic analysis and metabolite identification.

Results

The results showed that there were significant differences in the expression of 27 metabolites between bladder cancer patients and the cancer-free controls.

Conclusion

In the multivariate statistical analysis of this study, the urinary metabolic profile data of bladder cancer patients were analyzed, and the receiver operating characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of bladder cancer through these candidate biomarkers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCA, N estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Ebrahimi H, Amini E, Pishgar F, Moghaddam SS, Nabavizadeh B, Rostamabadi Y et al (2019) Global, Regional and National Burden of Bladder Cancer, 1990 to 2016: results from the GBD Study 2016. J Urol 201(5):893–901. https://doi.org/10.1097/ju.0000000000000025

    Article  PubMed  Google Scholar 

  3. Pinto J, Carapito Â, Amaro F, Lima AR, Carvalho-Maia C, Martins MC et al (2021) Discovery of volatile biomarkers for bladder cancer detection and staging through urine metabolomics. Metabolites. https://doi.org/10.3390/metabo11040199

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lopez-Beltran A, Cheng L, Gevaert T, Blanca A, Cimadamore A, Santoni M et al (2020) Current and emerging bladder cancer biomarkers with an emphasis on urine biomarkers. Expert Rev Mol Diagn 20(2):231–243. https://doi.org/10.1080/14737159.2020.1699791

    Article  CAS  PubMed  Google Scholar 

  5. Alberice JV, Amaral AF, Armitage EG, Lorente JA, Algaba F, Carrilho E et al (2013) Searching for urine biomarkers of bladder cancer recurrence using a liquid chromatography-mass spectrometry and capillary electrophoresis-mass spectrometry metabolomics approach. J Chromatogr A 1318:163–170. https://doi.org/10.1016/j.chroma.2013.10.002

    Article  CAS  PubMed  Google Scholar 

  6. Roux A, Xu Y, Heilier JF, Olivier MF, Ezan E, Tabet JC et al (2012) Annotation of the human adult urinary metabolome and metabolite identification using ultra high performance liquid chromatography coupled to a linear quadrupole ion trap-Orbitrap mass spectrometer. Anal Chem 84(15):6429–6437. https://doi.org/10.1021/ac300829f

    Article  CAS  PubMed  Google Scholar 

  7. Glickman ME, Rao SR, Schultz MR (2014) False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. J Clin Epidemiol 67(8):850–857. https://doi.org/10.1016/j.jclinepi.2014.03.012

    Article  PubMed  Google Scholar 

  8. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M et al (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res 49(W1):W388–W396. https://doi.org/10.1093/nar/gkab382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chou R, Gore JL, Buckley D, Fu R, Gustafson K, Griffin JC et al (2015) Urinary biomarkers for diagnosis of bladder cancer: a systematic review and meta-analysis. Ann Intern Med 163(12):922–931. https://doi.org/10.7326/m15-0997

    Article  PubMed  Google Scholar 

  10. Wittmann BM, Stirdivant SM, Mitchell MW, Wulff JE, McDunn JE, Li Z et al (2014) Bladder cancer biomarker discovery using global metabolomic profiling of urine. PLoS ONE 9(12):e115870. https://doi.org/10.1371/journal.pone.0115870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Srivastava S, Roy R, Singh S, Kumar P, Dalela D, Sankhwar SN et al (2010) Taurine - a possible fingerprint biomarker in non-muscle invasive bladder cancer: a pilot study by 1H NMR spectroscopy. Cancer Biomark 6(1):11–20. https://doi.org/10.3233/cbm-2009-0115

    Article  PubMed  Google Scholar 

  12. Issaq HJ, Nativ O, Waybright T, Luke B, Veenstra TD, Issaq EJ et al (2008) Detection of bladder cancer in human urine by metabolomic profiling using high performance liquid chromatography/mass spectrometry. J Urol 179(6):2422–2426. https://doi.org/10.1016/j.juro.2008.01.084

    Article  CAS  PubMed  Google Scholar 

  13. Cheng X, Liu X, Liu X, Guo Z, Sun H, Zhang M et al (2018) Metabolomics of non-muscle invasive bladder cancer: biomarkers for early detection of bladder cancer. Front Oncol 8:494. https://doi.org/10.3389/fonc.2018.00494

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu X, Cheng X, Liu X, He L, Zhang W, Wang Y et al (2018) Investigation of the urinary metabolic variations and the application in bladder cancer biomarker discovery. Int J Cancer 143(2):408–418. https://doi.org/10.1002/ijc.31323

    Article  CAS  PubMed  Google Scholar 

  15. Peng J, Chen YT, Chen CL, Li L (2014) Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal Chem 86(13):6540–6547. https://doi.org/10.1021/ac5011684

    Article  CAS  PubMed  Google Scholar 

  16. Dinges SS, Hohm A, Vandergrift LA, Nowak J, Habbel P, Kaltashov IA et al (2019) Cancer metabolomic markers in urine: evidence, techniques and recommendations. Nat Rev Urol 16(6):339–362. https://doi.org/10.1038/s41585-019-0185-3

    Article  PubMed  Google Scholar 

  17. Zhang T, Wu X, Ke C, Yin M, Li Z, Fan L et al (2013) Identification of potential biomarkers for ovarian cancer by urinary metabolomic profiling. J Proteome Res 12(1):505–512. https://doi.org/10.1021/pr3009572

    Article  CAS  PubMed  Google Scholar 

  18. Szefel J, Danielak A, Kruszewski WJ (2019) Metabolic pathways of L-arginine and therapeutic consequences in tumors. Adv Med Sci 64(1):104–110. https://doi.org/10.1016/j.advms.2018.08.018

    Article  PubMed  Google Scholar 

  19. Huang Z, Lin L, Gao Y, Chen Y, Yan X, Xing J et al (2011) Bladder cancer determination via two urinary metabolites: a biomarker pattern approach. Mol Cell Proteom 10(10):7922. https://doi.org/10.1074/mcp.M111.007922

    Article  CAS  Google Scholar 

  20. Pasikanti KK, Esuvaranathan K, Ho PC, Mahendran R, Kamaraj R, Wu QH et al (2010) Noninvasive urinary metabonomic diagnosis of human bladder cancer. J Proteome Res 9(6):2988–2995. https://doi.org/10.1021/pr901173v

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy BE, Sharif T, Martell E, Dai C, Kim Y, Lee PW et al (2016) NAD(+) salvage pathway in cancer metabolism and therapy. Pharmacol Res 114:274–283. https://doi.org/10.1016/j.phrs.2016.10.027

    Article  CAS  PubMed  Google Scholar 

  22. Miyamoto H, Yang Z, Chen YT, Ishiguro H, Uemura H, Kubota Y et al (2007) Promotion of bladder cancer development and progression by androgen receptor signals. J Natl Cancer Inst 99(7):558–568. https://doi.org/10.1093/jnci/djk113

    Article  CAS  PubMed  Google Scholar 

  23. Kouznetsova VL, Kim E, Romm EL, Zhu A, Tsigelny IF (2019) Recognition of early and late stages of bladder cancer using metabolites and machine learning. Metabolomics 15(7):94. https://doi.org/10.1007/s11306-019-1555-9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JL and PB are grateful to Zhongshan Hospital Xiamen University, and Xiamen University School of Medicine, for their fellowships. This work was supported by PeiMing Bai from the National Natural Science Foundation of China (Grant no. 21535007).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the study concept and design. Material preparation, data collection, and analysis are carried out by JL, BC, HX, CZ, and SL. The first draft of the manuscript was written by JL, and PB critically revised the work. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Peiming Bai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

The study design was carried out in accordance with the Declaration of Helsinki and was approved by the Ethics Committee of Zhongshan Hospital Affiliated to Xiamen University (XMZSYY-AF-SC-12-03).

Consent to participate

All individuals had given written informed consent to be included in this study before participation.

Consent to publish

All individuals had signed informed consent for the publishing of their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 660 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cheng, B., Xie, H. et al. Bladder cancer biomarker screening based on non-targeted urine metabolomics. Int Urol Nephrol 54, 23–29 (2022). https://doi.org/10.1007/s11255-021-03080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-03080-6

Keywords

  • Bladder cancer
  • Metabolomics
  • Liquid chromatography
  • Biomarker