Skip to main content

Advertisement

Log in

Astaxanthin attenuates contrast-induced acute kidney injury in rats via ROS/NLRP3 inflammasome

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Objective

To explore the protective effect and mechanism of astaxanthin on the kidney of rats with contrast-induced acute kidney injury.

Methods

Forty SD rats were randomly divided into five groups: Control group (CON); Astaxanthin control group (AST); Contrast media group (CM); Astaxanthin pre-treatment group (AST + CM); N-acetylcysteine pre-treatment group (NAC + CM), each group with eight rats. The rats were killed 72 h after the modeling, the blood supernatant and kidneys were collected, and then the serum creatinine and blood urea nitrogen levels were measured; HE staining was used to observe the pathological changes in kidney tissue; TUNEL was used to detect apoptosis level in renal tubular epithelial cells; frozen section was used to observe the expression of ROS in renal tissue by reactive oxygen staining; the expression of NLRP3, ASC, caspase-1, IL-1β, IL-18 were detected by immunohistochemistry and western blot.

Results

The CI-AKI rat model was induced by iohexol. Then the elevated level of ROS activated the inflammatory response mediated by NLRP3 inflammasome (NLRP3, ASC, caspase-1). Subsequently, the increase in renal tubular epithelial cell apoptosis caused the destruction of the pathological structure of the kidney and finally led to renal impairment. While after the pretreatment of astaxanthin, the level of ROS was decreased. The activation level of NLRP3 inflammasome and its mediated inflammatory response were alleviated significantly. Eventually, the level of renal tubular epithelial cell apoptosis and renal damage were significantly mitigated.

Conclusion

Astaxanthin can protect the kidney in CI-AKI by inhibiting the activation of NLRP3 inflammasome-IL-1β/IL-18 through inhibition of the production of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nash K, Hafeez A, Hou S (2002) Hospital-acquired renal insufficiency. Am J Kidney Dis 39(5):930–936. https://doi.org/10.1053/ajkd.2002.32766

    Article  PubMed  Google Scholar 

  2. Mehran R, Dangas GD, Weisbord SD (2019) Contrast-associated acute kidney injury. N Engl J Med 380(22):2146–2155. https://doi.org/10.1056/NEJMra1805256

    Article  CAS  PubMed  Google Scholar 

  3. Weisbord SD, Palevsky PM (2008) Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 3(1):273–280. https://doi.org/10.2215/CJN.02580607

    Article  CAS  PubMed  Google Scholar 

  4. Fishbane S (2008) N-acetylcysteine in the prevention of contrast-induced nephropathy. Clin J Am Soc Nephrol 3(1):281–287. https://doi.org/10.2215/CJN.02590607

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Liu Y, Fu L, Mei C, Dai B (2012) Efficacy of short-term high-dose statin in preventing contrast-induced nephropathy: a meta-analysis of seven randomized controlled trials. PLoS ONE 7(4):e34450. https://doi.org/10.1371/journal.pone.0034450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldfarb M, Rosenberger C, Ahuva S, Rosen S, Heyman SN (2006) A role for erythropoietin in the attenuation of radiocontrast-induced acute renal failure in rats. Ren Fail 28(4):345–350. https://doi.org/10.1080/08860220600591420

    Article  CAS  PubMed  Google Scholar 

  7. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, Mintz GS, Lansky AJ, Moses JW, Stone GW, Leon MB, Dangas G (2004) A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol 44(7):1393–1399. https://doi.org/10.1016/j.jacc.2004.06.068

    Article  PubMed  Google Scholar 

  8. McCullough PA, Adam A, Becker CR, Davidson C, Lameire N, Stacul F, Tumlin J, Panel CINCW (2006) Risk prediction of contrast-induced nephropathy. Am J Cardiol 98:27K-36K. https://doi.org/10.1016/j.amjcard.2006.01.022

    Article  PubMed  Google Scholar 

  9. Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, Dua A, Short L, Kane K (2014) Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet 383(9931):1814–1823. https://doi.org/10.1016/S0140-6736(14)60689-9

    Article  PubMed  Google Scholar 

  10. Morcos R, Kucharik M, Bansal P, Al Taii H, Manam R, Casale J, Khalili H, Maini B (2019) Contrast-induced acute kidney injury: review and practical update. Clin Med Insights Cardiol 13:1179546819878680. https://doi.org/10.1177/1179546819878680

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scharnweber T, Alhilali L, Fakhran S (2017) Contrast-Induced acute kidney injury: pathophysiology, manifestations, prevention, and management. Magn Reson Imaging Clin N Am 25(4):743–753. https://doi.org/10.1016/j.mric.2017.06.012

    Article  PubMed  Google Scholar 

  12. Zhao B, Zhao Q, Li J, Xing T, Wang F, Wang N (2015) Renalase protects against contrast-induced nephropathy in Sprague–Dawley rats. PLoS ONE 10(1):e0116583. https://doi.org/10.1371/journal.pone.0116583

    Article  PubMed  PubMed Central  Google Scholar 

  13. Heyman SN, Rosen S, Khamaisi M, Idee JM, Rosenberger C (2010) Reactive oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest Radiol 45(4):188–195. https://doi.org/10.1097/RLI.0b013e3181d2eed8

    Article  PubMed  Google Scholar 

  14. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963):296–300. https://doi.org/10.1126/science.1184003

    Article  CAS  PubMed  Google Scholar 

  15. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT (2013) NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493(7434):674–678. https://doi.org/10.1038/nature11729

    Article  CAS  PubMed  Google Scholar 

  16. Jin C, Frayssinet P, Pelker R, Cwirka D, Hu B, Vignery A, Eisenbarth SC, Flavell RA (2011) NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci USA 108(36):14867–14872. https://doi.org/10.1073/pnas.1111101108

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karasawa T, Takahashi M (2017) Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb 24(5):443–451. https://doi.org/10.5551/jat.RV17001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14(21):1929–1934. https://doi.org/10.1016/j.cub.2004.10.027

    Article  CAS  PubMed  Google Scholar 

  19. Shen J, Wang L, Jiang N, Mou S, Zhang M, Gu L, Shao X, Wang Q, Qi C, Li S, Wang W, Che X, Ni Z (2016) NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci Rep 6:34682. https://doi.org/10.1038/srep34682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan X, Zheng X, Huang Z, Lin J, Xie C, Lin Y (2017) Involvement of S100A8/A9-TLR4-NLRP3 inflammasome pathway in contrast-induced acute kidney injury. Cell Physiol Biochem 43(1):209–222. https://doi.org/10.1159/000480340

    Article  CAS  PubMed  Google Scholar 

  21. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. https://doi.org/10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  22. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856. https://doi.org/10.1038/ni.1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han Y, Xu X, Tang C, Gao P, Chen X, Xiong X, Yang M, Yang S, Zhu X, Yuan S, Liu F, Xiao L, Kanwar YS, Sun L (2019) Corrigendum to “reactive oxygen species promote tubular injury in diabetic nephropathy: the role of the mitochondrial ros-txnip-nlrp3 biological axis” [redox biology 16 (2018) 32–46]. Redox Biol 24:101216. https://doi.org/10.1016/j.redox.2019.101216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26(5):1378–1385. https://doi.org/10.1523/JNEUROSCI.3902-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ding T, Wang S, Zhang X, Zai W, Fan J, Chen W, Bian Q, Luan J, Shen Y, Zhang Y, Ju D, Mei X (2018) Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome. Phytomedicine 41:45–53. https://doi.org/10.1016/j.phymed.2018.01.026

    Article  CAS  PubMed  Google Scholar 

  26. Kim SH, Kim H (2018) Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients. https://doi.org/10.3390/nu10091137

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kim YJ, Kim YA, Yokozawa T (2009) Protection against oxidative stress, inflammation, and apoptosis of high-glucose-exposed proximal tubular epithelial cells by astaxanthin. J Agric Food Chem 57(19):8793–8797. https://doi.org/10.1021/jf9019745

    Article  CAS  PubMed  Google Scholar 

  28. Guo SX, Zhou HL, Huang CL, You CG, Fang Q, Wu P, Wang XG, Han CM (2015) Astaxanthin attenuates early acute kidney injury following severe burns in rats by ameliorating oxidative stress and mitochondrial-related apoptosis. Mar Drugs 13(4):2105–2123. https://doi.org/10.3390/md13042105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the affiliated hospital of Xuzhou Medical University.

Funding

Fund project: Six Talent Peaks Projects in Jiangsu province of China (2014-YY007).

Author information

Authors and Affiliations

Authors

Contributions

LS, SY and WHL contributed to the conception of the work, conducting the study, revising the draft, approval of the final version of the manuscript, and agreed on all aspects of the work. LS, SY, DW, YLX and WHL contributed to the conception of the work, and drafting and revising the draft. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Wenhua Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Ethical approval

The experiments were performed in accordance with the Guide for the Care and Use of Laboratory Animals published in P. R. China and with the approval of Xuzhou Medical University Ethics Committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Yao, S., Zheng, D. et al. Astaxanthin attenuates contrast-induced acute kidney injury in rats via ROS/NLRP3 inflammasome. Int Urol Nephrol 54, 1355–1364 (2022). https://doi.org/10.1007/s11255-021-03015-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-03015-1

Keywords

Navigation