Skip to main content

Advertisement

Log in

Gremlin1 and TGF-β1 protect kidney tubular epithelial cells from ischemia–reperfusion injury through different pathways

  • Nephrology - Original Paper
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Gremlin1 belongs to the superfamily members of transforming growth factor (TGF)-β1, playing a profibrotic role in chronic kidney diseases (CKD) and the transition from the late stage of acute kidney injury (AKI) to CKD, but the effect it plays in the early stage of AKI is unclear. This study aimed to investigate the role of Gremlin1on apoptosis in renal tubular epithelial cells under ischemia–reperfusion (I/R) induction.

Methods

We detected Gremlin1 and TGF-β1 expression in the kidneys of mice undergoing renal ischemia–reperfusion injury bilaterally. We induced apoptosis through depletion and reperfusion of oxygen and serum in human kidney tubular epithelial cells (HKCs), mimicking I/R injury in vivo, and detected the role and pathways of Gremlin1 and TGF-β1on HKCs injury.

Results

Mice undergoing bilateral I/R surgery presented AKI with a significant increase in serum creatinine, obvious renal tubular injuries, and increased macrophage cell and T-cell infiltration in interstitial areas. Gremlin1 expression was significantly increased along with TGF-β1 in the kidneys of AKI mice compared to sham mice. Exogenous Gremlin1 inhibited I/R-induced caspase3 expression in HKCs, which was blocked by a VEGFR2 kinase inhibitor III (SU5416). TGF-β1 also inhibited I/R-induced cell apoptosis in HKCs but had no synergic effect with Gremlin1. The TGF-β1’s inhibitory effect could be blocked by the TGF-β1 type I receptor (activin receptor-like kinase 5, and ALK5)-specific inhibitor SB431542.

Conclusions

Gremlin1 and TGF- β1 protect kidney tubular epithelial cells from ischemia–reperfusion-induced apoptosis through VEGFR2 and Smad2 signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Che M, Li Y, Liang X, Xie B, Xue S, Qian J et al (2011) Prevalence of acute kidney injury following cardiac surgery and related risk factors in Chinese patients. Nephron Clin Pract 117(4):c305–c311

    Article  Google Scholar 

  2. Hobson CE, Yavas S, Segal MS, Schold JD, Tribble CG, Layon AJ et al (2009) Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 119(18):2444–2453

    Article  Google Scholar 

  3. Karkouti K, Wijeysundera DN, Yau TM, Callum JL, Cheng DC, Crowther M et al (2009) Acute kidney injury after cardiac surgery: focus on modifiable risk factors. Circulation 119(4):495–502

    Article  Google Scholar 

  4. Oeal JB, Shaw AD, Billings FT (2016) Acute kidney injury following cardiac surgery: current understanding and future directions. Crit Care 20(1):187

    Article  Google Scholar 

  5. Negi S, Koreeda D, Kobayashi S, Yano T, Tatsuta K, Mima T et al (2018) Acute kidney injury: epidemiology, outcomes, complications, and therapeutic strategies. Semin Dial 31(5):519–527

    Article  Google Scholar 

  6. Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14(8):2199–2210

    Article  Google Scholar 

  7. Sharfuddin AA, Molitoris BA (2011) Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol 7(4):189–200

    Article  CAS  Google Scholar 

  8. Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E et al (2014) Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA 312(21):2244–2253

    Article  Google Scholar 

  9. Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131(14):3401–3410

    Article  CAS  Google Scholar 

  10. Marquez-Exposito L, Lavoz C, Rodrigues-Diez RR, Rayego-Mateos S, Orejudo M, Cantero-Navarro E et al (2018) Gremlin regulates tubular epithelial to mesenchymal transition via VEGFR2: potential role in renal fibrosis. Front Pharmacol 9:1195

    Article  CAS  Google Scholar 

  11. Carvajal G, Droguett A, Burgos ME, Aros C, Ardiles L, Flores C et al (2008) Gremlin: a novel mediator of epithelial mesenchymal transition and fibrosis in chronic allograft nephropathy. Transpl Proc 40(3):734–739

    Article  CAS  Google Scholar 

  12. Marchant V, Droguett A, Valderrama G, Burgos ME, Carpio D, Kerr B et al (2015) Tubular overexpression of Gremlin in transgenic mice aggravates renal damage in diabetic nephropathy. Am J Physiol Renal Physiol 309(6):F559–F568

    Article  CAS  Google Scholar 

  13. Wang XB, Zhu H, Song W, Su JH (2018) Gremlin regulates podocyte apoptosis via transforming growth factor-beta (TGF-beta) pathway in diabetic nephropathy. Med Sci Monit Int Med J Exp Clin Res 24:183–189

    CAS  Google Scholar 

  14. Staloch D, Gao X, Liu K, Xu M, Feng X, Aronson JF et al (2015) Gremlin is a key pro-fibrogenic factor in chronic pancreatitis. J Mol Med 93(10):1085–1093

    Article  CAS  Google Scholar 

  15. Bhatia V, Cao Y, Ko TC, Falzon M (2016) Parathyroid hormone-related protein interacts with the transforming growth factor-beta/bone morphogenetic protein-2/gremlin signaling pathway to regulate proinflammatory and profibrotic mediators in pancreatic acinar and stellate cells. Pancreas 45(5):659–670

    Article  CAS  Google Scholar 

  16. Myllarniemi M, Lindholm P, Ryynanen MJ, Kliment CR, Salmenkivi K, Keski-Oja J et al (2008) Gremlin-mediated decrease in bone morphogenetic protein signaling promotes pulmonary fibrosis. Am J Respir Crit Care Med 177(3):321–329

    Article  CAS  Google Scholar 

  17. Church RH, Ali I, Tate M, Lavin D, Krishnakumar A, Kok HM et al (2017) Gremlin1 plays a key role in kidney development and renal fibrosis. Am J Physiol Renal Physiol 312(6):F1141–F1157

    Article  CAS  Google Scholar 

  18. Ma T, Huang C, Xu Q, Yang Y, Liu Y, Meng X et al (2017) Suppression of BMP-7 by histone deacetylase 2 promoted apoptosis of renal tubular epithelial cells in acute kidney injury. Cell Death Dis 8(10):3139

    Article  Google Scholar 

  19. Ma T, Huang C, Meng X, Li X, Zhang Y, Ji S et al (2016) A potential adjuvant chemotherapeutics, 18beta-glycyrrhetinic acid, inhibits renal tubular epithelial cells apoptosis via enhancing BMP-7 epigenetically through targeting HDAC2. Sci Rep 6:25396

    Article  CAS  Google Scholar 

  20. Wei R, Zhang R, Xie Y, Shen L, Chen F (2015) Hydrogen suppresses hypoxia/reoxygenation-induced cell death in hippocampal neurons through reducing oxidative stress. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharm 36(2):585–598

    Article  CAS  Google Scholar 

  21. Brooks C, Wei Q, Cho SG, Dong Z (2009) Regulation of mitochondrial dynamics in acute kidney injury in cell culture and rodent models. J Clin Investig 119(5):1275–1285

    Article  CAS  Google Scholar 

  22. Gao X, Cao Y, Staloch DA, Gonzales MA, Aronson JF, Chao C et al (2014) Bone morphogenetic protein signaling protects against cerulein-induced pancreatic fibrosis. PLoS ONE 9(2):e89114

    Article  Google Scholar 

  23. Dolan V, Murphy M, Sadlier D, Lappin D, Doran P, Godson C et al (2005) Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am J Kidney Dis 45(6):1034–1039

    Article  CAS  Google Scholar 

  24. Mezzano S, Droguett A, Lavoz C, Krall P, Egido J, Ruiz-Ortega M (2018) Gremlin and renal diseases: ready to jump the fence to clinical utility? Nephrol Dial Transplant 33(5):735–741

    Article  CAS  Google Scholar 

  25. Droguett A, Krall P, Burgos ME, Valderrama G, Carpio D, Ardiles L et al (2014) Tubular overexpression of gremlin induces renal damage susceptibility in mice. PLoS ONE 9(7):e101879

    Article  Google Scholar 

  26. Rodrigues-Diez R, Lavoz C, Carvajal G, Rayego-Mateos S, Rodrigues Diez RR, Ortiz A et al (2012) Gremlin is a downstream profibrotic mediator of transforming growth factor-beta in cultured renal cells. Nephron Exp Nephrol 122(1–2):62–74

    Article  CAS  Google Scholar 

  27. Rodrigues-Diez R, Rodrigues-Diez RR, Lavoz C, Carvajal G, Droguett A, Garcia-Redondo AB et al (2014) Gremlin activates the Smad pathway linked to epithelial mesenchymal transdifferentiation in cultured tubular epithelial cells. Biomed Res Int 2014:802841

    Article  Google Scholar 

  28. Molitoris BA (1999) Acute renal failure. Drugs Today (Barc) 35(9):659–666

    Article  CAS  Google Scholar 

  29. Havasi A, Borkan SC (2011) Apoptosis and acute kidney injury. Kidney Int 80(1):29–40

    Article  CAS  Google Scholar 

  30. Lavoz C, Alique M, Rodrigues-Diez R, Pato J, Keri G, Mezzano S et al (2015) Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol 236(4):407–420

    Article  CAS  Google Scholar 

  31. Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F (2019) Cell death in the kidney. Int J Mol Sci 20(14):3598

    Article  CAS  Google Scholar 

  32. Brazil DP, Church RH, Surae S, Godson C, Martin F (2015) BMP signalling: agony and antagony in the family. Trends Cell Biol 25(5):249–264

    Article  CAS  Google Scholar 

  33. Farkas L, Farkas D, Gauldie J, Warburton D, Shi W, Kolb M (2011) Transient overexpression of Gremlin results in epithelial activation and reversible fibrosis in rat lungs. Am J Respir Cell Mol Biol 44(6):870–878

    Article  CAS  Google Scholar 

  34. Soofi A, Zhang P, Dressler GR (2013) Kielin/chordin-like protein attenuates both acute and chronic renal injury. J Am Soc Nephrol 24(6):897–905

    Article  CAS  Google Scholar 

  35. Liao WJ, Lin H, Cheng CF, Ka SM, Chen A, Yang RB (2019) SCUBE1-enhanced bone morphogenetic protein signaling protects against renal ischemia-reperfusion injury. Biochim Biophys Acta 1865(2):329–338

    Article  CAS  Google Scholar 

  36. Zhen-Qiang F, Bing-Wei Y, Yong-Liang L, Xiang-Wei W, Shan-Hong Y, Yuan-Ning Z et al (2012) Localized expression of human BMP-7 by BM-MSCs enhances renal repair in an in vivo model of ischemia-reperfusion injury. Genes Cells Devoted Mol Cell Mech 17(1):53–64

    Article  Google Scholar 

  37. Ji C, Huang JW, Xu QY, Zhang J, Lin MT, Tu Y et al (2016) Gremlin inhibits UV-induced skin cell damages via activating VEGFR2-Nrf2 signaling. Oncotarget 7(51):84748–84757

    Article  Google Scholar 

  38. Huang H, Huang H, Li Y, Liu M, Shi Y, Chi Y et al (2013) Gremlin induces cell proliferation and extra cellular matrix accumulation in mouse mesangial cells exposed to high glucose via the ERK1/2 pathway. BMC Nephrol 14:33

    Article  CAS  Google Scholar 

  39. Guan Q, Nguan CY, Du C (2010) Expression of transforming growth factor-beta1 limits renal ischemia-reperfusion injury. Transplantation 89(11):1320–1327

    Article  CAS  Google Scholar 

  40. Yang Q, Ren GL, Wei B, Jin J, Huang XR, Shao W et al (2019) Conditional knockout of TGF-betaRII /Smad2 signals protects against acute renal injury by alleviating cell necroptosis, apoptosis and inflammation. Theranostics 9(26):8277–8293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Wei Cui, Sa Liu, and Limin Zhao at the Beijing Institute of Heart, Lung and Blood Vessel Diseases for technical support.

Funding

This work was supported by a grant from Beijing Municipal Natural Science Foundation (7162055).

Author information

Authors and Affiliations

Authors

Contributions

XG: experimental design, data generation and interpretation, manuscript draft, revision, approval, and submission. LH: experimental design, data generation, and interpretation. XY: experimental design, data generation, and interpretation. LM: experimental design, data interpretation, manuscript revision, and approval.

Corresponding authors

Correspondence to Xuxia Gao or Liping Ma.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Han, L., Yao, X. et al. Gremlin1 and TGF-β1 protect kidney tubular epithelial cells from ischemia–reperfusion injury through different pathways. Int Urol Nephrol 54, 1311–1321 (2022). https://doi.org/10.1007/s11255-021-03010-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-03010-6

Keywords

Navigation